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Abstract: A solid, two-component, quantum luminiferous aether is proposed to exist. Simple pos-

tulates are hypothesized, along with some physical laws and assignments. Derivations then lead to

the equations of electrodynamics (Maxwell’s equations and the Lorentz force equation), Newton’s

law of universal gravitation, and to two field-masses. The theory is shown to successfully meet the

classic tests of general relativity: calculations for the advance of the perihelia, the Shapiro effect,

and the gravitational redshift agree with experiment, and the experimental result concerning the

bending of light in gravitational fields is also understood. Additionally, gravitational waves are

understood, and the first of the field-masses allows for an understanding of what is presently known

as dark matter. A new approach to analyzing dense objects such as white dwarfs and neutron stars

is discussed, and since the theory has no singularity, a replacement for black holes is suggested.

Replacing relativity with an absolute, realist, and physical model returns us to a flat Euclidean

space and a separate time. Absolute simultaneity enables understanding of quantum mechanics.

The underlying philosophical grounding is discussed. VC 2024 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-37.1.9]

R�esum�e: Il est propos�e qu’il existe un �ether lumineux quantique solide �a deux composants. Des

postulats simples sont �emis, ainsi que certaines lois et attributions physiques. Les d�erivations

conduisent ensuite aux �equations de l’�electrodynamique (�equations de Maxwell et �equation de

force de Lorentz), �a la loi de la gravitation universelle de Newton et �a deux champs de masse. Il est

d�emontr�e que la th�eorie r�epond avec succès aux tests classiques de la Relativit�e G�en�erale: les

calculs pour l’avanc�ee des p�erih�elies, l’effet Shapiro et le d�ecalage vers le rouge gravitationnel sont

en accord avec l’exp�erience, et le r�esultat exp�erimental concernant la courbure de la lumière dans

les champs gravitationnels est �egalement compris. De plus, les ondes gravitationnelles sont

comprises et la première des masses de champ permet de comprendre ce que l’on appelle

actuellement la matière noire. Une nouvelle approche pour analyser les objets denses tels que les

naines blanches et les �etoiles �a neutrons est discut�ee, et comme la th�eorie n’a pas de singularit�e, un

remplacement des trous noirs est sugg�er�e. Remplacer la relativit�e par un modèle absolu, r�ealiste et

physique nous ramène �a un espace euclidien plat et �a un temps s�epar�e. La simultan�eit�e absolue

permet de comprendre la m�ecanique quantique. Le fondement philosophique sous-jacent est

discut�e
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FORWARD

This paper is related to a rigorous, quite lengthy, and

extremely detailed version available online.1 In the present

work, we will use the equation numbers from Ref. 1 to facili-

tate cross referencing to Ref. 1 should more details be

desired.

PART A. INTRODUCTION

A.1. Present problems in physics

There are presently some rather fundamental problems

in physics. While not a problem “per se”, the relativity of

Einstein2,3 is a point-like theory in a curved four-

dimensional space-time continuum. Relativity has enjoyed

great success in mathematically modeling the effects of

gravity, but its point-like nature leads to infinities. Since par-

ticles have finite mass and charge, assuming a volume of

zero results in infinite densities. Additionally, there are other

problems. Relativity describes black holes as infinite singu-

larities; dark matter particles have not been found;4,5 the cos-

mological constant is orders of magnitude removed from

expectations6 and quantum mechanics is incompatible with

relativity.7–9

The known problems in physics are tolerated because

both relativity and quantum mechanics are highly successful.

Special relativity enables a derivation of the Lorentz trans-

formation. Both the Lorentz force law10 and Maxwell’s

equations11 can be put into a form consistent with relativity,

and this explains electrodynamics. General relativity

explains gravity. Meanwhile, all experiments done to date

are in agreement with quantum mechanics.

Yet despite the great success of relativity and quantum

mechanics, the known problems leave us unsatisfied.a)del@particlebeamlasers.com

ISSN 0836-1398 (Print); 2371-2236 (Online)/2024/37(1)/9/22/$25.00 VC 2024 Physics Essays Publication9

PHYSICS ESSAYS 37, 1 (2024)

http://dx.doi.org/10.4006/0836-1398-37.1.9


Einstein was always troubled by quantum mechanics as

exemplified by his famous quip that God does not play dice.

And Einstein, Podolsky, and Rosen7 (EPR) wrote a paper

showing that relativity and quantum mechanics are incom-

patible. Bell8 extended the work of EPR, and Aspect et al.9

did experimental tests that agreed with quantum mechanics.

Given the fundamental confrontation between quantum

mechanics and relativity, we might wish to consider the pos-

sibility that relativity should be set aside.

A.2. A new starting philosophy

To look for a new solution, we should start by question-

ing our most basic foundations, and this involves philosophy.

Descartes12 has shown us that philosophy naturally ends

with the conclusion that we cannot really know anything for

certain other than that we ourselves exist. And that of course

would be a dead end for physics; for physics we must start

somewhere. The positivism rooted in Hume,13 developed by

Mach14 and embraced by Einstein leads us to put our trust

only in experimental observations (although it is important

to note that Hume also realized that observations cannot be

completely trusted either). In essence, the positivist approach

goes down the philosophical path to stop at the trusting of

observations, without going all the way to the Descartes real-

ization that we can only trust that we exist. Here, we will

reject the positivist philosophy and instead choose a different

starting point. We will agree with Descartes that nothing in

physics can be trusted at all, and then build up from that min-

imalist certainty by simply asserting a fundamental axiom of

our proposed physical philosophy. We will not try to philo-

sophically prove this axiom to be correct; we will merely

assert it and see where it leads. The axiom we propose is that

a reality exists that cannot be completely observed. Or more

concisely, we assert our Fundamental Axiom:

A Partially observable reality exists.

Our fundamental axiom differs from positivism in that

we are asserting the existence of an objective reality,

whether we can fully observe that reality or not. We elevate

that asserted reality to a primacy above observations. Indeed,

since reality is asserted to be only partially observable,

observations only inform us about a subset of reality and

therefore observations are secondary to reality under our

assertion.

With our philosophical foundation established, our aims

in physics are then fourfold. First, we must physically model

our asserted underlying reality; second, we must logically

derive mathematical equations to represent that physical

model; third, we must assert where the boundary is between

what we can observe and what we cannot observe; and

fourth, we must measure what is possible to observe and test

our equations against those observations. Our physical model

will be built with additional assertions and assignments as

we proceed. Agreement of our model with observations will

be considered to be affirmative evidence of our model. Dis-

agreement between our model and observations will mean

we should correct our model and go through the process

again. Our physical philosophy is extremely concise as

compared to that of most philosophers, as we accept the sim-

plicity of the Descartes realization that nothing can be

proven to be true, and we then simply propose a limited

number of axioms and require no proof of them other than

that they lead to equations that are in agreement with experi-

mental observations.

Heisenberg’s15 uncertainty principle at the heart of quan-

tum mechanics can be used to illustrate the difference

between positivism and the philosophy following from our

fundamental axiom, and the Heisenberg uncertainty principle

can also define a boundary between what is and is not

observable. Heisenberg states that one cannot simultaneously

measure both the momentum and the position of any entity

down to an arbitrary small accuracy. If we try to measure the

position very accurately, it leads to the momentum being

known only vaguely, and vice versa. This places limits on

our ability to observe any entity. It becomes the limiting

boundary of what we can observe. Under a positivist philoso-

phy, the Heisenberg expression DpDx >¼ �h/2 enforces a

limit on any further assertions concerning an underlying real-

ity. Any subquantum analysis or theorizing is to be rejected

since it is unverifiable through observations. Under our fun-

damental axiom, we accept that we cannot simultaneously

measure both momentum and size at a subquantum level, but

we are free to assert that a subquantum reality nonetheless

exists, and that we may analyze it.

Starting from our assertion that a partially observable

physical reality exists, we will next choose to simply set rela-

tivity aside and return to the idea of an absolute simultaneity.

From there we will go on to develop a physical model of our

asserted reality. This approach leaves us in a similar position

to where things stood prior to 1905, when an absolute theory

was assumed. Space was assumed to be flat and Euclidean,

and time was the parameter that orders events. Maxwell had

already developed his famous equations. Lorentz and others

had developed the Lorentz transformation16 and the Lorentz

force equation.10 The Michelson Morley17 result was

explained by a physical length contraction. All of this was

done before relativity, and all of it assumed an underlying

aether and absolute simultaneity. The Lorentz ether theory is

fully equivalent mathematically to special relativity; all that

is lacking is a replacement for general relativity as well as

physical models for Maxwell’s equations and the Lorentz

force equation.

PART B. THE HYPOTHESIS AND SETTING UP THE
ANALYSIS

B.1. The hypothesis

Our hypothesis begins by observing that light is a trans-

versely polarized wave. It is known from normal matter that

transversely polarized waves are possible in solids under ten-

sion. Hence, we propose that the aether is a solid under ten-

sion. Since matter is normally quantized, we propose that the

aether is quantized. We also propose that there are two types

of aether, one we call positive aether and the other we call

negative aether. While the aether is usually in a solid form,

we propose that sufficient energy might lead to some of the

aether being freed from the solid bonds. We will often refer
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to the solid aether as attached-aether, and the free pieces as

detached-aether. (Later we will identify detached-aether as

electric charge.) We propose that different types of aether

may be able to flow through other types of aether. Locally,

such as within our galaxy, the aether can be thought of as a

gigantic solid block. However, aether at great distances away

from us may be moving with respect to us. You can think of

the aether as being somewhat similar to a glacier, where dis-

tant parts may move with respect to one another, but where

an analysis of a small local portion will lead to the conclu-

sion that it is a stationary solid block.

B.2. Notation for aetherial displacements

For our analysis, we define the vector fields P, N, PG,

and NG. In the absence of sources or waves, the positive

aether will be in a nominal state where it is homogeneous

and isotropic and be at rest. Each individual small cube of

positive-aether will have some position in that nominal state.

When waves, sources, or sinks are present, the aether may

move away from its nominal position. P is the displacement

vector of the positive-attached-aether from its nominal posi-

tion, while N is the displacement vector for the negative-

attached-aether. P and N refer to displacements caused by

electricity and magnetism effects, while PG and NG refer to

displacements caused by gravitational effects.

B.3. Starting assumptions

We will assume some standard starting assumptions

based on empirical work done by physicists over time. We

will assume Newton’s law F¼ dp/dt is correct, where p is

bcmc, b is v over c, and c¼ [1� b2]�1/2. Here, v is the veloc-

ity of some arbitrary body, and c is the speed of light. The

aether is also assumed to be fermionic, and hence it obeys

the Pauli exclusion rule.18 We assume Schr€odinger’s equa-

tion19 and E¼mc2 are valid. For the vast majority of this

work, we will analyze things from a frame of reference at

rest with respect to the aether, and a physical length contrac-

tion and time dilation of moving bodies is assumed. Finally,

we will assume that any distortions of a quantum of aether

are small with respect to the size of the quantum.

B.4. The five postulates

Five foundational postulates are asserted as part of our

hypothesis:

The Density Postulate. In any volume, the density of the

positive-aether equals the density of the negative-aether

minus an amount proportional to the extrinsic-energy within

the volume.

The Tension Postulate. In the absence of external

effects, the tension within a quantum of attached-aether is

proportional to the separation of any two parallel faces of its

surrounding volume.

The Flow Postulate. When aether of one type flows rela-

tive to aether of another type, a flow force is generated that is

proportional to the flow, and the force is aligned with the flow.

The Aetherial Displacement-Work Postulate. When

attached-aether is displaced, work is done on the aether by

the force fields that is proportional to the force, proportional

to the distance of displacement, and proportional to the

amount of aether displaced.

The Extrinsic-Energy Force-Reduction Postulate. The

presence of extrinsic-energy (mass) decreases the positive

(negative) attached-aether tension and the negative (positive)

attached-aether quantum-force by an amount proportional to

the amount of extrinsic-energy present with a constant of

proportionality KG1 (KG2).

B.5. The foundational equations

With no extrinsic-energy present, the density postulate is

expressed mathematically as

qP ¼ qPA þ qPD ¼ qNA þ qND ¼ qN: (1)

Here, qP(qN) is the positive (negative) aether density,

qPAðqNAÞ is the positive (negative) attached-aether density,

and qPDðqNDÞ is the positive (negative) detached-aether den-

sity. The tension postulate is expressed mathematically as

FTn ¼ KTn0nQ: (2)

We can integrate the tension force of Eq. (2) to obtain

the tension energy

ETn ¼ 1=2ð ÞKTn0nQ
2: (3)

In Eqs. (2) and (3), nQ is the distance we stretch the

aether, and KTn0 is the nominal tension parameter for the ten-

sion force.

Next, we will look at the quantum effects. Figure 1

shows forces within an aetherial quantum. Recall that we’ve

assumed that the aether is fermionic. As a result of this, we

can analyze the situation for an individual fermion. Each fer-

mion will be a single quantum, surrounded by other quanta.

Those other quanta will lead to an exclusion region via the

assumed Pauli exclusion rule, and this situation results in

each fermion being in a three-dimensional square well poten-

tial. Within this cubic well, quantum-pressure will push out,

and the tension force will pull in. The equilibrium state will

exist when these forces balance each other. Using the

assumed Schr€odinger equation, the energy of a state within

an infinite square well is

EQn ¼ KQn0=nQ
2: (4)

FIG. 1. Forces in an aetherial quantum cube (see Section F.3 for further

discussion).
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We can now differentiate the energy with respect to dis-

tance to get the force magnitude at the cube walls

FQn ¼ jdEQn=dXQj ¼ 2KQn0=nQ
3: (5)

In Eqs. (4) and (5), KQn0 is the nominal quantum-

pressure force parameter. The nominal cube size and aethe-

rial density can be derived (see Ref. 1) as

n0 ¼ ð2KQn0=KTn0Þ1=4; (7)

q0 ¼ Qn=n
3
0 ¼ Qn=ð2KQn0=KTn0Þ3=4

¼ QnðKTn0=2KQn0Þ3=4: (9)

Note that in Eq. (9), Qn is the amount of aether contained

in a single quantum-cube.

As mentioned in Section A.2, it is possible to analyze

the physics of subquantum regions once we adopt our funda-

mental axiom of a partially observable reality. We will

define an analysis-cube as having edge sizes of

XQ ¼ nQ=n: (10)

We then form the tension and quantum energies of those

cubes

ET ¼ ETn=n3 ¼ 1=2ð ÞKTn0n
2
Q=n3 ¼ 1=2ð ÞKT0X2

Q; (11)

EQ ¼ EQn=n3 ¼ KQn0=n
2
Qn3 ¼ KQ0=X2

Q: (12)

In Eqs. (11) and (12), we define the new tension and

quantum parameters

KT0 ¼ KTn0=n; (13)

KQ0 ¼ KQn0=n5: (14)

We then form the forces on the analytic-cube faces by

differentiating the energy with respect to distance

FT0 ¼ jdET=dXQj ¼ KT0XQ; (15)

FQ0 ¼ jdEQ=dXQj ¼ 2KQ0=X3
Q: (16)

The advantage of the subquantum analysis is that we can

take limits as our analysis-cube shrinks to zero, and this will

allow us to drop terms that vanish when we do so.

In Ref. 1, we find the nominal size X0 of an analysis-

cube by evaluating where the total energy E¼ETþEQ is

minimized. We then obtain the following useful relations:

X4
0 ¼ 2KQ0=KT0; (20)

KT0X0 ¼ 2KQ0=X3
0; (21)

KT0X2
0 ¼ 2KQ0=X2

0; (22)

X0 ¼ ð2KQ0=KT0Þ1=4: (23)

Starting from the Aetherial Displacement-Work Postu-
late, Ref. 1 obtains

WTD ¼ ðX0=n0ÞKc

ð
KTX0dx; (32)

WQD ¼ ðX0=n0ÞKc

ð
2KQ=X3

0dx: (33)

In Eqs. (32) and (33), WTD (WQD) is the work done by

displacement through the tension (quantum) field, and Kc is

the arbitrary proportionality parameter mentioned in the

postulate.

PART C. ELECTROMAGNETISM

C.1. Poisson’s equation

Recall Eq. (1), the mathematical expression for our den-

sity postulate equating the positive and negative aetherial

densities: qP ¼ qPA þ qPD ¼ qNA þ qND ¼ qN. If we insert

some detached-positive-aether into a region of attached-

aether, Eq. (1) states that the total positive-aether density

will equal the total negative-aether density, but notice that

this could be achieved by either increasing the negative-

attached-aether density or decreasing the positive-attached-

aether density. Energy considerations can be shown to lead

to the positive-attached-aether density being reduced by one

half of the inserted positive-detached-aether density, while

the negative-attached-aether density is increased by one half

of the inserted positive-detached-aether density (see Ref. 1).

A similar analysis done for insertion of negative-detached-

aether results in

qPA ¼ q0 � qPD=2þ qND=2; (41)

qNA ¼ q0 � qND=2þ qPD=2: (42)

Figure 2 presents a diagram of what happens when posi-

tive-detached-aether is injected into positive-attached-aether.

We see that this injection results in an expansion of the posi-

tive-attached-aether cube. Prior to the injection of the

detached-aether, the amount of positive-attached-aether is

the nominal density q0 multiplied by the volume of the cube,

DxDyDz. When we inject positive-detached-aether into that

cube, the amount of positive-attached-aether will remain the

same, but the volume of the cube will expand, with Dx
becoming larger by dx and similar increases in Dy and Dz.

The positive-attached-aether density is then the original

amount of aether divided by the new larger volume, and this

new density is

FIG. 2. Analysis-cube of undisturbed aether (left) and one with injected

detached-aether (right).
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qPA ¼ q0 DxDyDzð Þ= Dxþ dxð Þ Dyþ dyð Þ Dzþ dzð Þ
� �

�q0 DxDyDzð Þ= DxDyDzþ dxDyDzð
þdyDxDzþ dzDxDyÞ
¼ q0=ð1þ dx=Dxþ dy=Dyþ dz=DzÞ
� q0ð1� dx=Dx� dy=Dy� dz=DzÞ:

(45)

We next observe that the expansion of the cube is related

to the difference in the displacement vector P between its

value at the cube center and its value at the edge face of the

cube, dx=2 ¼ PXðxþ Dx=2; y; z; tÞ � PXðx; y; z; tÞ. We

then divide by Dx/2 to arrive at dx=Dx ¼ ½PXðxþ Dx=2; y;
z; tÞ � PXðx; y; z; tÞ�=Dx=2 ¼ @PX=@x, where the last equal-

ity is in the limit when we shrink our analysis-cube to zero

size. Repeating the derivation for y and z will lead to similar

expressions. Hence, Eq. (45) can be re-expressed as qPA ¼
q0ð1� dx=Dx� dy=Dy� dz=DzÞ ¼ q0ð1� @PX=@x� @PY=
@y �@PZ=@zÞ, or,

qPA ¼ q0ð1�r � PÞ: (46)

We now rearrange the terms of Eq. (46) and then substi-

tute in the value of qPA from Eq. (41)

r � P ¼ ðq0 � qPAÞ=q0 ¼ ðqPD � qNDÞ=2q0: (47)

Next we observe from Fig. 2 that P is purely longitudi-

nal. That is, detached-aether pushes outward on the cube

walls but it does not cause any rotation. A purely longitudi-

nal vector field can be formed from the gradient of a scalar

field. The scalar field is named WP

PL ¼ rWP: (48)

This allows us to obtain

r � P ¼ r � PL ¼ r � rWP ¼ r2WP: (49)

Next, combine Eqs. (47) and (49) to yield

r2WP ¼ r � PL ¼ r � P ¼ ðqPD � qNDÞ=2q0: (50)

A similar derivation can be applied to the negative-

aether to arrive at

r2WN ¼ r � NL ¼ r � N ¼ ðqND � qPDÞ=2q0: (52)

Subtract Eq. (52) from Eq. (50)

r2ðWP �WNÞ ¼ ðqPD � qNDÞ=q0: (54)

Now define / by / ¼ �ðWP �WNÞq0=e0, where e0 is

the permittivity of free space and define qD¼ (qPD� qND).

We have (WP�WN)¼�e0//q0 and hence r2(WP�WN)

¼�e0r2//q0¼ (qPD�qND)/q0¼qD/q0. Hence, we see that

Eq. (54) is Poisson’s equation

r2/ ¼ �qD=e0: (55)

With this definition for /, we can also derive

PL � NL ¼ rðWP �WNÞ ¼ �e0r/=q0: (56)

We see above that the presence of detached-aether leads to

displacement of the negative-attached-aether that is always

equal and opposite to the displacement of the positive-

attached-aether. Since injection of detached-aether is the

only physical cause for the longitudinal displacements PL

and NL of the attached-aether, we arrive at

NL ¼ �PL: (58)

C.2. The delta force

On the walls of a quantum-cube Eq. (15) gives the

inward force due to tension as FT0¼ |dET/dXQ|¼KT0XQ and

Eq. (16) gives the outward force due to quantum-pressure as

FQ0¼ |dEQ/dXQ|¼ 2KQ0/XQ
3. In Section C.1, we have seen

that injection of detached-aether changes the size of a posi-

tive-attached-aether quantum. Equations (15) and (16) indi-

cate that the increased size will increase the tension and

decrease the quantum-pressure. To maintain the larger size

XQ, the presence in the cube of positive-detached-aether

must therefore result in a detached-aether immersion force

Fd (the delta-force) that acts on the walls of the positive-

attached-aether analysis-cube that is equal and opposite to

the sum of the longitudinal-tension-force and the quantum-

pressure force

Fd ¼ �FTL � FQ: (59)

The force supplied by the detached-aether is given the

name delta force since that force is equal to the difference

between the quantum-pressure and tension forces, as that is

what is needed to keep the quantum-cube in force equilib-

rium. Equation (59) above specifies the definition of the delta

force. Note that while Eq. (59) appears to form a negative

sum, that the direction of the tension is opposite to that of

the quantum force, and that is why we say, the delta force is

the difference of these two forces. Note also that we use the

longitudinal component of the tension force because only the

longitudinal component is supplied by the detached-aether.

When a source of detached-aether is present, the cubes are dis-

placed and distorted both inside and outside of the source

regions. The delta force therefore exists both inside and outside

the source regions. The delta force is the force which balances

the sum of forces on all cube faces for electromagnetic effects.

C.3. Work done on displaced aether

When a cube of aether moves through the tension and

quantum-pressure force fields, work is done as described in

Eqs. (32) and (33) above. For the delta force, which equation

is used depends upon the form of the delta force for the spe-

cific case being evaluated. Reference 1 rigorously evaluates

the work done on an analytic-cube as it is displaced against

the tension, quantum-pressure, and delta forces. The evalua-

tions are quite tedious, and here we will only present the

results. The work done due to tension when a cube moves a

distance P due to a source of detached-aether is

ETPPI ¼ KT0X2
0

h
1=2ð Þ þ KcjPj=n0 þ K2

c ðjPj=n0Þ2

þ3dX=X0 þ 3KcjPjdX=2X0n0

i
:

(67)
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In Eq. (67), the subscript TPPI refers to Tension of the

Positive-attached-aether due to immersed Positive-detached-

aether in the region Inside of a sphere of detached-aether.

The cube will also stretch because of the source presence,

and dX is the amount it stretches. Equation (67) includes this

effect as well. The work done against the quantum-pressure

when a cube is moved by P is

EQPPI ¼ 2KQ0=X2
0

� �h
1=2ð Þ � KcjPj=n0

þK2
c jPj

2=n2
0 � 3dX=X0 þ 3KcjPjdX=2X0n0

i
:

(69)

The work done against the delta force when a cube is

moved by P is

EdPPI ¼ 2Kc
2KT0ðX0=n0Þ2jPj2 � 3KT0X0KcjPjdX=n0:

(71)

The total work is the sum of the work done against the

tension, quantum-pressure, and delta forces

EP ¼ KT0X2
0 1þ 4K2

c P2=n2
0

h i
: (72)

The total work done via displacement for the negative-

aether is

EN ¼ KT0X2
0 1þ 4K2

c N2=n2
0

h i
: (77)

C.4. The flow force

Section B.4 specified a flow postulate. Empirically, we

now propose a more specific form of the flow postulate for

the case of detached-aether flows:

The Electrodynamic Flow Force Law: In regions where

there is flowing detached-aether, both the detached-aether

and the attached-aether density disturbances caused by the

detached-aether will generate a force upon the attached-

aether components that is proportional to the relative flow

between the flowing detached-aether and the attached-

aether; the force will be aligned with the flow, and only the

transverse component of the flow leads to a force. (The lon-

gitudinal component of the flow does not lead to any force.)

For flowing detached-aether, the force given by The
Electrodynamic Flow Force Law results in

FFP1 ¼ KF1DVqPD UPDT � @PT=@t½ �
� KF1DVqND UNDT � @PT=@t½ �; (78)

FFN1 ¼ KF1DVqND UNDT � @NT=@t½ �
� KF1DVqPD UPDT � @NT=@t½ �: (79)

In Eqs. (78) and (79), KF1 is the proportionality constant,

DV is the volume containing the detached-aether, qPD is the

positive-detached-aether density, and UPDT is the transverse

velocity of the positive-detached-aether. The negative-aether

quantities use a similar nomenclature.

Flowing detached-aether will also cause forces from an

“image charge” of flowing attached-aether

FFP2 ¼ �KF2DVqPD UPDT � @PT=@t½ �
þ KF2DVqND UNDT � @PT=@t½ �; (80)

FFN2 ¼ �KF2DVqND UNDT � @NT=@t½ �
þ KF2DVqPD UPDT � @NT=@t½ �: (81)

In Eqs. (80) and (81), KF2 is the proportionality constant,

which we allow to be different from KF1 since the underlying

physical cause is different for this flow.

C.5. The transverse tension force

When cubes become transversely displaced from one

another, this can lead to a transverse tension force. Figure 3

shows a situation where the center cube is displaced below

adjacent cubes. We choose a coordinate system such that the

center cube is at a position r plus P(r), where r is the nomi-

nal position of the cube for an aether without any sources,

sinks or waves. The cube to the right will be located at

rþ Dxiþ Pðrþ DxiÞ. We can now form a vector D for the

separation of the cubes

D ¼ rþ Dxiþ P xþ Dx; y; z; tð Þ � r� P x; y; z; tð Þ
¼ Dxiþ P xþ Dx; y; z; tð Þ � P x; y; z; tð Þ:

(82)

Now form D/Dx

D=Dx ¼ iþ @P=@x

¼ iþ ð@Px=@xÞiþ ð@Py=@xÞjþ ð@Pz=@xÞk:
(83)

Keeping terms to first order in small quantities the mag-

nitude of D/Dx is

jD=Dxj¼ ð1þ@Px=@xÞ2þð@Py=@xÞ2þð@Pz=@xÞ2
h i1=2

�1þ@Px=@x:

(84)

Next, form a unit vector d in the direction of D/Dx,

d ¼ D=Dxð Þ=jD=Dxj
� 1þ @Px=@xð Þiþ @Py=@x

� �
j

�
þ @Pz=@xð Þk�= 1þ @Px=@x½ �
� iþ ð@Py=@xÞjþ ð@Pz=@xÞk: (85)

FIG. 3. A central cube displaced downward, leading to tension forces with

upward components.
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The total force on the central cube of Fig. 3 is

FTYZ ¼ FT x; y; z; tð Þ þ @FT=@xð ÞDx
� �
iþ @Py xþ Dx; y; z; tð Þ=@x
� �

j
�
þf@Pz xþ Dx; y; z; tð Þ=@xgk�
�FT x; y; z; tð Þ iþ f@Py x; y; z; tð Þ=@xgj

�
þf@Pz x; y; z; tð Þ=@xgk

�
:

(88)

Equation (88) is simply the force FT2þFT1 from Fig. 3.

Note that our arbitrary coordinate system now uses r as the

position of the left face of the central cube and r plus Dxi for

the position of the right face.

Next, we define T0 as the nominal magnitude of the

attached-aetherial-tension per unit area. (T0 is the tension per

unit area in the absence of sources, sinks and waves.) It is

assumed that deviations of FT(x, y, z, t) from T0DyDz will

always be small, or FT(x, y, z, t) � T0DyDz, leaving

FTYZ ¼ T0DyDzþ @FT=@xð ÞDx½ �
iþ @Py xþ Dx; y; z; tð Þ=@x
� �

j
�
þf@Pz xþ Dx; y; z; tð Þ=@xgk�
�T0DyDz iþ f@Py x; y; z; tð Þ=@xgj

�
þ f@Pz x; y; z; tð Þ=@xgk�: (89)

It is assumed that @Py/@x and @Pz/@x are small quantities

in comparison to 1. Also we note that f@Pyðxþ
Dx; y; z; tÞ=@xg � f@Pyðx; y; z; tÞ=@xg ¼ Dx@2Py=@x2 in

the limit as Dx! 0 and we have a similar equation for @2Pz/

@x2. Keeping only the terms that are lowest order in small

quantities

FTYZ ¼ ð@FT=@xÞDxiþ T0DxDyDzð@2Py=@x2Þj

þ T0DxDyDzð@2Pz=@x2Þk: (90)

The calculation of the partial derivative of the tension

force with respect to x is a bit tedious, and so we do not pre-

sent it in full here (for full details, see Ref. 1). Here, we just

present the result

ð@FT=@xÞDx ¼ ð@FT=@xÞX0 ¼ T0X3
0 @

2Px=@x2
� �

¼ DxDyDzT0ð@2Px=@x2Þ: (94)

Note again that here we have used Dx ¼ Dy ¼ Dz ¼ X0

and we allow our analysis-cube to shrink to zero. Substitut-

ing Eq. (94) into Eq. (90) leaves

FTYZ ¼ DxDyDz T0ð@2Px=@x2Þi
�

þT0ð@2Py=@x2Þjþ T0ð@2Pz=@x2Þk
�
: (95)

So far we have just analyzed the forces on the yz cube

faces. Applying a similar analysis to the other four cube

faces, we find the total transverse tension force on a positive-

attached-aether analytic-cube

FTPT ¼ DxDyDzT0r2P: (96)

C.6. Maxwell’s equations

We now define KF3¼KF1�KF2 and then sum Eqs. (78)

and (80)

FFP ¼ FFP1 þ FFP2

¼ �KF3DVqPD UPDT � @PT=@t½ �
þ KF3DVqND UNDT � @PT=@t½ �: (99)

Equation (99) is the equation for the total flow force on

the positive-attached-aether. Reference 1 shows that

@P=@t� UPD so we can drop @P/@t and expanding the vol-

ume of the analysis-cube DV as DxDyDz

FFP ¼ �KF3qPDDxDyDzUPDT þ KF3qNDDxDyDzUNDT

¼ KF3DxDyDz qNDUNDT � qPDUPDT½ �:
(100)

The longitudinal portion of the tension force is balanced

by the quantum-pressure and delta forces, and only the trans-

verse portion of the tension force will affect the attached-

aether equation of motion. Hence, the force on a cube of

attached-aether is given by the sum of the forces given in

Eqs. (96) and (100). We can now form F¼ma on a cube of

the attached-aether. The mass is its mass density m0 times its

volume, m ¼ m0DxDyDz, and the acceleration is the second

derivative with respect to time of the cube position. The

position is given as the constant nominal position plus P, and

since the derivative of a constant is zero, the acceleration is

@2
P/@t2. Hence,

FP¼ma¼m0DxDyDz @2P=@t2
� �

¼FTPTþFFP

¼DxDyDzT0r2PþKF3DxDyDz qNDUNDT�qPDUPDT½ �:
(101)

Now define J and T0 and cancel DxDyDz from all terms

J ¼ qPDUPD � qNDUND; (103)

m0ð@2P=@t2Þ ¼ T0r2P� KF3JT; (104)

T0 ¼ m0c2; (107)

r2P� 1=c2
� �

ð@2P=@t2Þ ¼ KF3=T0ð ÞJT: (108)

Next we take the perpendicular component of Eq. (108)

and use a similar analysis on the negative-attached-aether

r2PT � 1=c2
� �

ð@2PT=@t2Þ ¼ KF3=T0ð ÞJT; (110)

r2NT � 1=c2
� �

ð@2NT=@t2Þ ¼ � KF3=T0ð ÞJT: (111)

It can be seen that Eq. (110) for PT is nearly identical to

Eq. (111) for NT, as they only differ in the sign of the right-

hand side and replacement of PT by NT, and so we have

NT¼�PT, and recalling Eq. (58), NL¼�PL,

N ¼ �P: (113)

We will now define a vector A,

PT ¼ �NT ¼ �KF3A=l0T0: (114)
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Substituting the relevant equation of Eqs. (114) into Eqs.

(110) and (111) leaves

r2A� 1=c2
� �

ð@2A=@t2Þ ¼ �l0JT: (115)

We will choose the conventional definition of JL,

JL ¼ �ð1=4pÞr
ð
ðr0 � JÞ=jx� x0j
� �

d3x0: (116)

Next note that the solution to Poisson’s equation,

Eq. (55), r2/ ¼ �qD=e0, is

/ x; tð Þ ¼ ð1=4pe0Þ
ð

qDðx’; tÞ=jx� x’j½ � d3x0: (117)

Now take the gradient of /ðx; tÞ and then take its partial

time derivative

@r/ x; tð Þ=@t ¼ ð1=4pe0Þr
ð
@ qDðx0; tÞ=@t=jx� x0j
� �

d3x0:

(118)

Using the continuity equation, @qD=@t ¼ �r:J, Eqs.

(116) and (118) reveal

e0@r/ x; tð Þ=@t ¼ JL: (119)

At this point, we can therefore add the quantity �l0JL þ
e0l0@r/=@t to Eq. (115), since this is adding zero. And

with e0l0 ¼ 1=c2, we get

r2A� 1=c2
� �

ð@2A=@t2Þ ¼ �l0JT � l0JL

þ 1=c2
� �

@r/=@t (120)

or

r2A� 1=c2
� �

ð@2A=@t2Þ ¼ �l0Jþ 1=c2
� �

@r/=@t:

(121)

Furthermore, since Eq. (114) informs us that A is a trans-

verse vector

r:A ¼ 0: (122)

It is also timely to recall Eq. (55)

r2/ ¼ �qD=e0: (55)

Equations (55), (121), and (122) are readily recognized

as Maxwell’s equations in the Coulomb gauge in terms of

potentials.

To get the more familiar Maxwell’s equations in terms

of fields, we start by defining two arbitrary vectors E and B,

E ¼ �r/� @A=@t; (123)

B ¼ rxA: (124)

Applying the partial derivative with respect to time to

Eq. (123)

@E=@t ¼ �@r/=@t� @2A=@t2: (125)

Next, add a term $($�A) to Eq. (121), which is permissi-

ble since by Eq. (122) $�A¼ 0

r2A� 1=c2
� �

ð@2A=@t2Þ ¼ �l0Jþ 1=c2
� �

@r/=@t

þrðr � AÞ:
(126)

Now rearrange terms (first equality below) and use

Eq. (125) for @E/@t (second equality below)

rðr � AÞ � r2A

¼ l0J� 1=c2
� �

@r/=@t� 1=c2
� �

ð@2A=@t2Þ
¼ l0Jþ 1=c2

� �
@E=@t: (127)

Now use rxB ¼ rxðrxAÞ ¼ rðr � AÞ � r2A to get

rxB ¼ l0Jþ 1=c2
� �

@E=@t: (128)

Taking the divergence of Eq. (123), r � E ¼ �
r � r/� @ðr � AÞ=@t. Withr � A ¼ 0, andr � r/ ¼ r2/,

and with Eq. (55)r2/ ¼ �qD=e0 this leaves

r � E ¼ qD=e0: (129)

Taking the divergence of Eq. (124), along with the iden-

tity r � ðrxAÞ ¼ 0

r � B ¼ 0: (130)

Now take the curl of Eq. (123), rxE ¼ �rxr/�
@ðrxAÞ=@t and recalling Eq. (124) B¼$xA and using the

identity rxr/ ¼ 0, we get

rxE ¼ �@B=@t: (131)

Equations (128)–(131) are Maxwell’s equations in terms

of fields.

C.7. The Lorentz force equation

So far we have looked at the forces on the attached-

aether. Now we will look at the forces on the detached-

aether, taking note that the density of the detached-aether qD

in Eqs. (55) and (129) is now recognized as what we call

electric charge density.

Equations (72) and (77) enable calculation of the force

that will occur on a sphere of detached-aether in the presence

of an ambient aetherial displacement PAL¼�NAL. We

assert that we can build any arbitrary distribution of

detached-aether from small enough uniform spheres, and

that the superposition of the resulting fields will allow for the

calculation of the general situation.

To analyze what happens to a sphere of detached-aether

in the presence of an ambient aetherial displacement, we will

first divide the sphere into slices, and then divide the slices

into strips as shown in Fig. 4. We will then look at small

cubes within those strips. The force on each cube will be

evaluated, and the force from all of the cubes will be

summed to find the total force on the sphere.
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If there is no ambient displacement of the aether, the

detached-aether will push the attached-aether out radially.

That displacement will be zero at the center of the sphere

and increase radially until the edge, as this is a solution of

Eq. (55)

Psphere ¼ ðqPD=6q0Þr ¼ ðqPD=6q0Þ xiþ yjþ zkð Þ:
(132)

If there is now an ambient longitudinal positive-

attached-aether displacement PAL, which without loss of

generality can be considered to be in the X direction,

PAL¼PAi, then the total positive-attached-aether displace-

ment within the sphere becomes PTOT ¼ PAL þ Psphere ¼
½ðqPD=6q0Þxþ PA�iþ ðqPD=6q0Þyjþ ðqPD=6q0Þzk. We can

now calculate the displacement energy of the sphere from

Eq. (72)

EPP x; y; zð Þ

¼ 4K2
c KT0X2

0P2=n2
0 ¼ 4K2

c KT0 X2
0=n

2
0

� 	
PTOT x; y; zð Þ
� �2

¼ 4K2
c KT0ðX2

0=n
2
0Þ ðqPD=6q0Þ2x2 þ 2ðqPD=6q0ÞxPA

h

þ PA
2 þ ðqPD=6q0Þ2y2 þ ðqPD=6q0Þ2z2�:

(133)

We then calculate the effect of a virtual displacement dx
and that gives us

EPP xþ dx; y; zð Þ

¼ 4Kc
2KT0 X0

2=n2
0

� 	
PTOT xþ dx; y; zð Þ½ �2

¼ 4K2
c KT0 X2

0=n
2
0

� 	
qPD=6q0ð Þ2 xþ dxð Þ2

h

þ2 qPD=6q0ð Þ xþ dxð ÞPA þ PA
2

þ qPD=6q0ð Þ2y2 þ qPD=6q0ð Þ2z2
i
: (134)

Subtracting Eq. (133) from Eq. (134) leaves the energy

change resulting from the virtual displacement

dEPP x; y; zð Þ ¼ EPP xþ dx; y; zð Þ � EPP x; y; zð Þ

¼ 4Kc
2KT0ðX2

0=n
2
0Þ 2ðqPD=6q0Þ2xdx
h

þðqPD=6q0Þ2dx2 þ 2ðqPD=6q0ÞdxPA

i
:

(135)

In the above expression, we can drop the term that is sec-

ond order in the small quantity dx, as we will take the limit

as dx! 0. We can now evaluate the force on the strip by

considering the sum of all volume elements within the strip.

We can drop the term 2(qPD/6q0)2xdx because for every

value of positive x on our strip there is a value of negative x
of equal magnitude. [The term 2(qPD/6q0)2xdx cancels out

over the strip because of symmetry.] The surviving term,

8K2
c KT0ðX2

0=n
2
0ÞðqPD=6q0ÞdxPA, is independent of x, y, or z.

Recalling that Eq. (135) refers to the change in energy for an

analysis-cube within the strip, we can form the relation for

the force on the whole strip by summing over all of the

analysis-cubes in the strip (Rstrip is the symbol for that sum).

Analyzing a strip of length 2L, width X0, and height X0, there

will be 2L/X0 analysis-cubes in that strip. The force in that

strip will be

FstripPP ¼
X

strip
dEPP x; y; zð Þ=dx
� �

¼ 2L=X0ð Þ8K2
c KT0 X2

0=n
2
0

� 	
qPD=6q0ð ÞdxPA=dx

¼ 8LK2
c KT0X0qPDPA=3q0n

2
0

¼ 8K2
c KT0LX2

0qPDPA=3q0nq2
0X0:

(136)

The force on the strip shown in Fig. 4 is proportional to

the volume of the strip (2LX2
0) but independent of x, y, and z.

The sum of the volume of all of the strips will be the volume

of the sphere, Vsphere. Hence, we can sum the forces from all

such strips to arrive at

FspherePP ¼ 4K2
c KT0VsphereqPDPA=3q0n

2
0X0: (137)

Including the force from the negative aether will lead to

a factor of two increase in the force, and here PA¼PAL so

the total force is now

FsphereP ¼ 8Kc
2KT0VsphereqPDPAL=3q0n

2
0X0: (139)

We now recall Eq. (56) PL � NL ¼ �e0r/=q0 and

using Eq. (113), N¼�P we form PAL � NAL ¼ 2PAL

¼ �e0r/=q0. This allows us to arrive at

Fsphere ¼ �4Kc
2KT0VsphereqPDe0r/=3n2

0X0q
2
0: (140)

We now set the value of KT0

KT0 ¼ 3q2
0X0n

2
0=4Kc

2e0: (141)

And setting Q¼VsphereqPD in Eq. (140), we obtain the

Lorentz force on the detached-aether due to ambient dis-

placed aether

FLD ¼ �Qr/: (142)

A similar derivation for negative-detached-aether will

again result in Eq. (142), provided we make the more general

assignment of Q¼Vsphere(qPD� qND).

We now consider the flow force on a sphere of detached-

aether. The reaction force back on the detached-aether will

be the negative of the sum of Eqs. (78) and (79), and this

allows us to obtain
FIG. 4. A sphere of detached-aether, and a slice of width DY (left). A slice

of the sphere showing a strip of depth DZ (right).
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FLF ¼ KF1DVqPD @PT=@t� @NT=@tð Þ
� KF1DVqND @PT=@t � @NT=@t½ �
¼ KF1Qð@PT=@t� @NT=@tÞ: (143)

In Eq. (143), Q is defined as DV(qPD� qND) where now

DV¼Vsphere. Recall Eq. (114), PT¼�NT¼�KF3A/l0T0.

From this, and using Eq. (113), N¼�P, we get @PT/

@t� @NT/@t¼�2KF3(@A/@t)/l0T0 so FLF ¼ KF1Q(@PT/

@t� @NT/@t)¼�(2KF3KF1Q/l0T0)@A/@t. Now make the

assignment

l0T0 ¼ 2KF3KF1: (144)

This allows the Lorentz force on any detached-aether

due to flow forces to be expressed as

FLF ¼ �Q@A=@t: (145)

The last force on detached-aether to be evaluated

involves an interplay between the flow and tension forces,

and it involves some complexity. Without loss of generality,

we can assume the flow is in the z direction, and this flow

will displace the attached-aether in the z direction. An ambi-

ent gradient in the attached-aether displacement could be in

any of the directions x, y, or z, and we will need to evaluate

each of these cases separately. Superposition of the separate

solutions will then be done to arrive at the general expression

for this force.

We will first consider a gradient of the z component of

the aetherial displacement with respect to x. The left side of

Fig. 5 shows the situation when there is no detached-aether

flowing through the cube. In that ambient condition, a cube

to the left of the one shown lies further down, and a cube to

the right lies further up. This leads to the force vectors

shown, and as can be seen, the forces will be in equilibrium

in that case. When there is a flow, as shown on the right side

of Fig. 5, the cube that is shown is pushed downward, and

this alters the relative position of that cube with respect to its

neighbors, altering the force vectors on its right and left

faces. Here we have looked at the forces on the y–z faces of

the cube.

Figure 6 shows the situation that exists on the x–z faces

of the cube when there is an aetherial gradient @PAZ/@x.

When the flow force pushes the cube downward, we again

get a restoring upward force from the tension. The equilib-

rium will occur when the downward force from the flow is

balanced by the upward component of the tension forces,

and forces shown in Figs. 5 and 6 will all contribute to this

equilibrium.

We now define an angle hF ¼ dPF=Dx and evaluate the

tension forces shown in Figs. 5 and 6

FLeft � T0Dx2 �iþ ðhF � @PAZ=@xÞk½

þiðhF � @PAZ=@xÞ2=2
i
; (147)

FRight�T0Dx2 iþðhFþ@PAZ=@xÞk�iðhFþ@PAZ=@xÞ2=2

h i
;

(148)

FFront � T0Dx2 jþ hFk� jhF
2=2

� �
; (149)

FBack � T0Dx2 �jþ hFkþ jhF
2=2

� �
: (150)

Finally, there is the force from the flow within the cube.

Equation (100) above, FFP ¼ �KF3qPDDVUPDT þ KF3qND

DVUNDT, gives the expression for the total flow force on the

positive-attached-aether due to flows. Since we are only

looking at positive-detached-aether flow, this becomes

FFlowPP ¼ �KF3qPDDVUPDT ¼ �KF3QPUk: (151)

In the second of Eq. (151), QP ¼ qPDDV and

UPDT¼Uk. Summing the five forces yields the total force

on the cube

FLT1PP ¼ T0Dx2 4hFk� 2hFð@PAZ=@xÞi½ � � KF3QPUk:

(152)

The subscript reminds us we are evaluating the Lorentz

Tension-force of type 1 for the case of Positive-detached-

aether flowing through Positive-attached-aether. In this case,

since the cube is free to move in the z direction, equilibrium

will be obtained when 4T0Dx2hF ¼ KF3QPU or hF ¼
KF3QPU=4T0Dx2 and hence FLT1PP ¼ �T0Dx22hFð@PAZ=
@xÞi ¼ �ið@PAZ=@xÞKF3QPU=2. Now recall PT ¼ �KF3A=
l0T0 from Eq. (114) to obtain

FLT1PP ¼ ið@AAZ=@xÞKF3
2QPU=2l0T0: (153)

The positive-detached-aether moves through both types

of attached-aether. When we evaluate positive-detached-

aether flowing through negative-attached-aether the relevant

portions of Eqs. (79) and (81) gives us a flow force of

FFlowPN¼KF3qPDDVUPDT, which is the negative of the flow

force given by Eq. (151). In this case, we use NT¼KF3A/

l0T0 from Eq. (114), which is the negative of what was used

to get to Eq. (153). Since there are two sign reversals in the

derivation, we obtain

FLT1PN ¼ ið@AAZ=@xÞKF3
2QPU=2l0T0: (154)

FIG. 5. Tension forces on the y–z faces of an analysis-cube of positive-

attached-aether in the presence of an ambient positive-attached-aether dis-

placement with gradient @PAZ/@x. Left side is when there is no flowing

detached-aether, right side when there is flowing detached-aether.

FIG. 6. Tension forces on x–z faces of an analysis-cube of positive-

attached-aether in the presence of an ambient positive-attached-aether dis-

placement with gradient @PAZ/@x. Left side is when there is no flowing

detached-aether, right side when there is flowing detached-aether.
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Equations (153) and (154) are forces on the attached-

aether due to flows of positive-detached-aether. The force on

the attached-aether can be cancelled if the force from Eqs.

(153) and (154) is transferred to the detached-aether. Hence,

the total Lorentz Tension force of type 1 on the positive-

detached-aether, FLT1P, is the sum of Eqs. (153) and (154)

FLT1P ¼ ið@AAZ=@xÞKF3
2QPU=l0T0: (155)

For the total Lorentz Tension force of type 1 on nega-

tive-detached-aether, Eqs. (78)–(81) inform us that there is

simply a change in sign in the direction of the flow force.

[Recall that we drop the terms @PT/@t and @NT/@t to get to

Eq. (100).] Therefore, the derivation involves replacing QP

by �QN which leaves

FLT1N ¼ �ið@AAZ=@xÞKF3
2QNU=l0T0: (156)

Defining Q¼QP�QN and combining Eqs. (155) and

(156) leaves

FLT1 ¼ ið@AAZ=@xÞKF3
2QU=l0T0: (157)

Now, assigning our constant KF3 through KF3
2¼l0T0

allows us to arrive at

FLT1 ¼ ið@AAZ=@xÞQU: (159)

A similar treatment to the above can be applied if the

ambient, parallel, attached-aetherial displacements are

instead assumed to vary in the y direction. This leads to

FLT2 ¼ jð@AAZ=@yÞQU: (160)

The other possibility for forces arising from detached-

aether flowing in the z direction is shown in Fig. 7, where we

see the effect of a gradient of the ambient PX with respect to

z. In this case, the ambient condition is that of a plane of

cubes above the cube shown being displaced to the right,

while a plane of cubes below the one shown is displaced to

the left. In the left figure we can see that without any flowing

detached-aether, there is a simple force balance. In the right

figure we see the effect when flowing detached-aether forces

the cube downward. The downward displacement of the

cube will alter the top and bottom tension forces resulting in

an upward net tension force that partially balances the force

from the downward flow force. (Forces on the remaining

cube faces complete the force balance relationship in the z
direction.)

The evaluation of the coupled tension and flow forces in

the presence of a gradient of PAX with respect to z for the

case of detached-aether moving in the z direction is rather

tedious and for that reason we will refer to Ref. 1 for all of

the details. Here, we present the result of the analysis

FLT3 ¼ �ið@AAX=@zÞQU; (169)

FLT4 ¼ �jð@AAY=@zÞQU: (170)

Summing the forces of Eqs. (159), (160), (169), and

(170), we obtain

FLT5 ¼ ið@AAZ=@xÞQUZ þ jð@AAZ=@yÞQUZ

� ið@AAX=@zÞQUZ � jð@AAY=@zÞQUZ:
(171)

In general, the velocity may not be in the z direction.

With a velocity in the x direction, U¼UX, we just make the

substitutions z to x, x to y, y to z, i to j, j to k, and k to i, in

the analysis. Then we do the same substitutions once more to

obtain the expression when U¼UY,

FLT6 ¼ jð@AAX=@yÞQUX þ kð@AAX=@zÞQUX

� jð@AAY=@xÞQUX � kð@AAZ=@xÞQUX;

(172)

FLT7 ¼ kð@AAY=@zÞQUY þ ið@AAY=@xÞQUY

� kð@AAZ=@yÞQUY � ið@AAX=@yÞQUY:

(173)

The total Lorentz force on moving detached-aether due

to the tension/flow effect is

FLT ¼ FLT5 þ FLT6 þ FLT7

þ ið@AAZ=@xÞQUZ þ jð@AAZ=@yÞQUZ

� ið@AAX=@zÞQUZ � jð@AAY=@zÞQUZ

þ jð@AAX=@yÞQUX þ kð@AAX=@zÞQUX

� jð@AAY=@xÞQUX � kð@AAZ=@xÞQUX

þ kð@AAY=@zÞQUY þ ið@AAY=@xÞQUY

� kð@AAZ=@yÞQUY � ið@AAX=@yÞQUY: (174)

The total force on a volume of detached-aether, Q, is the

force given in Eq. (142) from the energy effects due to dis-

placement, plus the flow force given in Eq. (145) plus the

force due to the tension/flow effects given in Eq. (174)

FIG. 7. Tension-forces on the x–y faces of an analysis-cube of attached-

aether in the presence of an ambient aetherial gradient @PAX/@z. Left side

shows the case where there is no flowing detached-aether, right side shows

the case where there is flowing detached-aether.
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FL ¼ FLD þ FLF þ FLT ¼ �Qru� Q@A=@t

þ ið@AAZ=@xÞQUZ þ jð@AAZ=@yÞQUZ

� ið@AAX=@zÞQUZ � jð@AAY=@zÞQUZ

þ jð@AAX=@yÞQUX þ kð@AAX=@zÞQUX

� jð@AAY=@xÞQUX � kð@AAZ=@xÞQUX

þkð@AAY=@zÞQUY þ ið@AAY=@xÞQUY

� kð@AAZ=@yÞQUY � ið@AAX=@yÞQUY: (175)

Now form $xA¼ [i@/@xþ j@/@yþk@/@z] 3 [iAAX

þ jAAYþ kAAZ]¼ k@AAY/@x� j@AAZ/@x�k@AAX/@y
þ i@AAZ/@yþ j@AAX/@z� i@AAY/@z, and then form

Ux$xA¼UX(�j@AAY/@x�k@AAZ/@xþ j@AAX/@yþk@AAX/

@z)þUY(i@AAY/@x� i@AAX/@y�k@AAZ/@yþ k@AAY/@z)

þUZ(i@AAZ/@xþ j@AAZ/@y� i@AAX/@z� j@AAY/@z), which

allows Eq. (175) to become

FL ¼ FLD þ FLF þ FLT

¼ �Qr/� Q@A=@t þ QUxrxA: (176)

Substituting in Eq. (123), E ¼ �r/� @A=@t, and

Eq. (124), B¼$xA leaves

FL ¼ QðEþ UxBÞ: (177)

Equation (177) is recognized as the Lorentz force

equation.

PART D. GRAVITATION

D.1. The gravitational Poisson equation

We now define qE, the extrinsic-energy-density for mas-

sive bodies, as

qE ¼ cMc2=V: (178)

In Eq. (178), M is the mass in a small volume V and

c ¼ ð1� v2=c2Þ�1=2
, where v is the velocity of the mass and

c the speed of light, and all quantities are measured with

respect to the rest frame of the aether. We now recall from

Section B.4:

The extrinsic-energy force-reduction postulate. The

presence of extrinsic-energy decreases the positive (nega-

tive) attached-aether tension and the negative (positive)

attached-aether quantum-force by an amount proportional to

the amount of extrinsic-energy present with a constant of

proportionality KG1 (KG2).

With XQ the size of the analysis-cube, the extrinsic-

energy force-reduction postulate can be expressed mathemat-

ically for the nominal analysis-cube as

FTP ¼ KTPXQ ¼ KT0ð1� KG1qEÞXQ; (179)

FTN ¼ KTNXQ ¼ KT0ð1� KG2qEÞXQ; (180)

FQP ¼ 2KQP=XQ
3 ¼ 2KQ0ð1� KG2qEÞ=XQ

3; (181)

FQN ¼ 2KQN=XQ
3 ¼ 2KQ0ð1� KG1qEÞ=XQ

3: (182)

From Eqs. (179) to (182), the force parameters are

KTP ¼ KT0ð1� KG1qEÞ; (183)

KTN ¼ KT0ð1� KG2qEÞ; (184)

KQP ¼ KQ0ð1� KG2qEÞ; (185)

KQN ¼ KQ0ð1� KG1qEÞ: (186)

Reference 1 shows that equilibrium between the

quantum-pressure and tension leads to a cube size of

X1 � X0ð1þ KG1 � KG2½ �qE=4Þ : (192)

Now recall Eq. (23), X0¼ (2KQ0/KT0)1/4, and with den-

sity inversely proportional to volume, qPA/q0¼ (1

þ [KG1�KG2]qE/4)�3 � (1� 3[KG1�KG2]qE/4). We now

define

qG ¼ 3 KG1 � KG2½ �qEq0=2 (193)

leaving

qPA ¼ q0 � qG=2: (194)

A similar derivation for the negative-aether gives

qNA ¼ q0 þ qG=2: (197)

Figure 8 presents a diagram of what happens when

extrinsic-energy is injected into positive-attached-aether. We

see from Eq. (194) that this injection results in an expansion

of the positive-attached-aether cube. Prior to the injection of

the extrinsic-energy, the amount of positive-attached-aether

is the nominal density q0 multiplied by the volume of the

cube, DxDyDDz. When we inject extrinsic-energy into that

cube, the amount of positive-attached-aether will remain the

same, but the volume of the cube will expand, with Dx
becoming larger by dx and similar increases in Dy and Dz.

The positive-attached-aether density is then the original

amount of aether divided by the new larger volume, and this

new density is

qPA ¼ q0 DxDyDzð Þ= Dx þ dxð Þ Dy þ dyð Þ Dz þ dzð Þ
� �

�q0 DxDyDzð Þ= DxDyDz þ dxDyDzð
þdyDxDz þ dzDxDyÞ
¼ q0=ð1 þ dx=Dx þ dy=Dy þ dz=DzÞ
� q0ð1 � dx=Dx � dy=Dy � dz=DzÞ:

(198)

FIG. 8. Analysis-cube of undisturbed aether (left). Cube with injected

extrinsic-energy (right).
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We next observe that the expansion of the cube is related

to the difference in the displacement vector PG between its

value at the cube center and its value at the edge face of the

cube, dx/2¼PGX(xþDx/2, y, z, t)�PGX(x, y, z, t). We then

divide by Dx/2 to arrive at dx/Dx¼ [PGX(xþDx/2, y, z,

t)�PGX(x, y, z, t)]/Dx/2¼ @PGX/@x, where the last equality

is in the limit when we shrink our analysis-cube to zero size.

Repeating the derivation for y and z will lead to similar

expressions. Hence, Eq. (198) can be re-expressed as qPA ¼
q0ð1� dx=Dx� dy=Dy� dz=DzÞ ¼ q0ð1� @PGX=@x �
@PGY=@y� @PGZ=@zÞ, or,

qPA � q0ð1�r � PGÞ: (199)

We now rearrange the terms of Eq. (199) and then substi-

tute in the value of qPA from Eq. (194)

r � PG � ðq0 � qPAÞ=q0 ¼ qG=2q0: (200)

Next we observe from Fig. 8 that PG is purely longitudi-

nal. That is, extrinsic-energy pushes outward on the cube

walls but it does not cause any rotation. A purely longitudinal

vector field can be formed from the gradient of a scalar field.

The scalar field is named wGP,

PGL ¼ rwGP: (201)

This allows us to obtain

r � PG ¼ r � PGL ¼ r � rwGP ¼ r2wGP: (202)

Next, combine Eqs. (200) and (202) to yield

r2wGP ¼ r � PGL ¼ r � PG ¼ qG=2q0: (203)

A similar derivation can be applied to the negative-aether

to arrive at

r2wGN ¼ r � NGL ¼ r � NG ¼ �qG=2q0: (205)

Subtract Eq. (205) from Eq. (203)

r2ðWGP �WGNÞ ¼ qG=q0: (207)

Now define /G by /G ¼ �ðWGP �WGNÞq0=e0, where e0

is the permittivity of free space. This results in Eq. (207)

becoming Poisson’s equation

r2/G ¼ �qG=e0: (208)

With this definition for /G, we can also derive

PGL � NGL ¼ rðWGP �WGNÞ ¼ �e0r/G=q0: (209)

We see above that the presence of extrinsic-energy leads

to displacement of the negative-attached-aether that is always

equal and opposite to the displacement of the positive-

attached-aether. Since injection of extrinsic-energy is the

only physical cause for the longitudinal displacements PGL

and NGL of the attached-aether, we arrive at

NGL ¼ �PGL: (211)

D.2. The gamma force

To better understand the force caused by the extrinsic-

energy, it is useful to consider the case of a sphere of

extrinsic-energy injected into the attached-aether. The solu-

tions to Eq. (208) (Poisson’s equation) for a uniform sphere

of extrinsic-energy with radius R0 are

PGIN ¼ ðqG=6q0Þ xiþ yjþ zkð Þ
¼ ðqG=6q0Þr r < R0ð Þ; (212)

PGOUT ¼ P0R0
2r̂=r2 ¼ ðqG=6q0ÞR0

3r̂=r2 r > R0ð Þ:
(213)

We see from Eq. (212) that the analytic-cubes will

expand inside a source. With an expanded central spherical

region, concentric spherical shells of positive-attached-aether

inside the sphere will move outward, also getting thicker.

Outside of the sphere concentric spherical shells will also

move outward, this time thinning and having increased sur-

face areas. It is the force from the extrinsic-energy that leads

to the displacements both inside and outside of the sphere of

extrinsic-energy, as the extrinsic-energy is pushing the posi-

tive-attached-aether radially outward in both regions.

On the walls of a quantum-cube, Eq. (15) gives the

inward force due to tension as FT0¼ |dET/dXQ|¼KT0XQ and

Eq. (16) gives the outward force due to quantum-pressure as

FQ0¼ |dEQ/dXQ|¼ 2KQ0/XQ
3. In Section D.1, we have seen

that injection of extrinsic-energy changes the size of a posi-

tive-attached-aether quantum. Equations (15) and (16) indi-

cate that the increased size will increase the tension and

decrease the quantum-pressure. To maintain the larger size

XQ, the presence in the cube of extrinsic-energy must there-

fore result in an extrinsic-energy-immersion force Fc (the

gamma-force) that acts on the walls of the positive-attached-

aether analysis-cube that is equal and opposite to the sum of

the longitudinal-tension-force and the quantum-pressure

force

Fc ¼ �FTL � FQ: (216)

Equation (216) specifies the definition of the gamma

force. Note that we use the longitudinal component of the

tension force because only the longitudinal component is sup-

plied by the extrinsic-energy. When a source of extrinsic-

energy is present, the cubes are displaced and distorted both

inside and outside of the source regions. The gamma force

therefore exists both inside and outside the source regions.

The gamma force is the force which balances the sum of

forces on all cube faces for gravitational effects. The gamma

force consists of two components:

FcPT ¼ 4Kc 1þ KGCð ÞKT0ðX0=n0Þxr̂; (218)

FcPQ ¼ �4KcKGCKT0ðX0=n0Þxr̂ : (219)

In Eqs. (218) and (219), KGC is a coupling constant.
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D.3. Work done on displaced aether

When a cube of aether moves through the tension,

quantum-pressure and gamma force fields, work is done as

described in Eqs. (32) and (33). The work evaluation is quite

tedious, and here we will only present the results (see Ref. 1

for details). The work done against tension inside of a sphere

of extrinsic-energy when a cube moves a distance PG due to

that extrinsic-energy is

ETPGI ¼ KT0X0
2
h

1=2ð Þ þ KcjPGj=n0 þ Kc
2ðjPGj=n0Þ2

þ3dX=X0 þ 3KcjPGjdX=2X0n0

i
:

(214)

The work done against the quantum-pressure inside of a

sphere of extrinsic-energy for a cube displacement PG due to

extrinsic-energy is

EQPGI ¼ 2KQ0=X0
2

� �h
1=2ð Þ �KcjPGj=n0

þKc
2jPGj2=n0

2 � 3dX=X0 þ 3KcjPGjdX=2X0n0

i
:

(215)

The work done against the gamma force inside of a

sphere of extrinsic-energy for a cube displacement PG due to

extrinsic-energy is

EcPGI¼KT0X0
2
h
�2Kc

2ðjPGj=n0Þ2�4Kc
2KGCðjPGj=n0Þ2

þ3KcjPGjdX=X0n0

i
:

(224)

The total work is the sum of Eqs. (214), (215), and (224)

EPG ¼ KT0X0
2ð1� 4Kc

2KGCjPGj2=n0
2Þ: (225)

A similar expression is derived for the negative-

attached-aether

ENG ¼ KT0X2
0ð1� 4Kc

2KGCjNGj2=n2
0Þ: (226)

D.4. Newtonian gravity

We will now use Eqs. (225) and (226) to calculate the

force that will occur on a sphere of extrinsic-energy in the

presence of an ambient aetherial displacement PAG¼�NAG.

We assert that we can build any arbitrary distribution of

extrinsic-energy from small enough uniform spheres, and

that the superposition of the resulting fields will allow for the

calculation of the general situation.

To analyze what happens to a sphere of extrinsic-energy

in the presence of an ambient aetherial displacement, we will

first divide the sphere into slices, and then divide the slices

into strips as shown in Fig. 9. Then we will look at small

cubes within those strips. The force on each cube will be

evaluated, and we will sum up the force on all of the cubes

to find the total force on the sphere.

If there is no ambient displacement of the aether, the

extrinsic-energy will push the attached-aether out radially.

That displacement will be zero at the center of the sphere

and increase radially until the edge, and this is a solution of

Eq. (208)

PGS ¼ ðqG=6q0Þr ¼ ðqG=6q0Þ xiþ yjþ zkð Þ: (227)

Equation (227) is of course just Eq. (212) but now we

use PGS for the displacement inside the sphere.

The ambient attached-aether displacement is PAG, which

without loss of generality is considered to be in the x
direction, PAG¼PAGi. We then get the total attached-aether

displacement within the sphere of PG ¼ PAG þ PGS ¼ ½PAG

þðqG=6q0Þx�iþ ðqG=6q0Þyjþ ðqG=6q0Þzk.

Returning to Fig. 9, within the strip, and using Eqs.

(225) and (227), the energy of a small positive-attached-

aether analysis-cube centered at x, y, z is

EPG x; y; zð Þ
¼ KT0X0

2 1� 4Kc
2KGCjPAG þ PGSj2=n0

2
� �

¼ KT0X0
2 1� 4Kc

2KGCj PAG½
�

þ qG=6q0ð Þx�iþ qG=6q0ð Þyjþ qG=6q0ð Þzkj2=n0
2g

¼ KT0X0
2f1� 4Kc

2KGC PAG
2 þ 2PAGðqG=6q0Þx

�
þ ðqG=6q0Þ2x2 þ ðqG=6q0Þ2y2 þ ðqG=6q0Þ2z2�=n0

2g:
(228)

We then calculate the effect of a virtual displacement dx
and that gives us

EPG xþ dx;y; zð Þ

¼KT0X0
2f1� 4Kc

2KGC

h
PAG

2þ 2PAGðqG=6q0Þðxþ dxÞ

þðqG=6q0Þ2ðxþ dxÞ2þðqG=6q0Þ2y2

þðqG=6q0Þ2z2
i
=n0

2g:

(229)

Subtracting Eq. (228) from Eq. (229) leaves the energy

change during the virtual displacement

dEPG x; y; zð Þ
¼ EPG xþ dx; y; zð Þ � EPG x; y; zð Þ
¼ �4KT0X0

2Kc
2KGC

2PAGðqG=6q0Þdxþ ðqG=6q0Þ2ð2xdxþ dx2Þ
h i

=n0
2:

(230)

FIG. 9. A sphere of extrinsic-energy showing a slice of width DY (left). A

slice of the sphere showing a strip of depth DZ (right).
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In the above expression, we can drop the term that is sec-

ond order in the small quantity dx, as we will take the limit

as dx! 0. We can now evaluate the force on the strip by

considering the sum of all volume elements within the strip.

The term �4KT0X0
2Kc

2KGCðqG=6q0Þ2ð2xdxÞ=n0
2 can be

dropped because for every value of positive x in our strip

there is a value of negative x of equal magnitude. The surviv-

ing term is �4KT0X0
2Kc

2KGC2PAGðqG=6q0Þdx=n0
2, and this

term is independent of x, y, or z. Recalling that Eq. (230)

refers to the change in energy for a single analysis-cube

within the strip, we can form the relation for the force on the

whole strip by summing over all of the analysis-cubes within

the strip (Rstrip is the symbol for that sum). The volume of

the strip is 2LDyDz, and therefore, the number of analysis-

cubes within the strip is 2LDyDz/X0
3, and the magnitude of

the force on the strip is

FstripPG ¼ Rstrip dDEPG x; y; zð Þ=dx
� �

¼ 4KT0X0
2Kc

2KGC2PAG qG=6q0

� �
=n0

2
h i

2LDyDz=X0
3

� �
¼ 8LDyDzKT0Kc

2KGCPAGqG=3q0X0n0
2:

(231)

The force on the strip shown in Fig. 9 is proportional to

the volume of the strip (2LDyDz) but independent of x, y,

and z. The sum of the volume of all of the strips will be the

volume of the sphere, Vsphere. Hence, we can sum the forces

from all such strips to arrive at

FspherePG ¼ 4VsphereKT0Kc
2KGCPAGqG=3q0X0n0

2: (232)

Including the force from the negative aether will lead to

a factor of two increase in the force, and here, the force

direction is included by replacing PAG with �PAG so the

total force is

FsphereG ¼ �8VsphereKT0Kc
2KGCPAGqG=3q0X0n0

2:

(234)

We now recall Eq. (209), PGL � NGL ¼ �e0r/G=q0,

and recall that before the injection of the extrinsic-energy

PGL¼PAG. And now with Eq. (211) NGL¼�PGL we have

PGL � NGL ¼ 2PGL ¼ 2PAG ¼ �e0r/G=q0; or PAG ¼ �e0

r/G=2q0. Thus, we arrive at

FsphereG ¼ 4VsphereKT0Kc
2KGCe0r/GqG=3q0

2X0n0
2:

(235)

We now recall KT0 ¼ 3q0
2X0n0

2=4Kc
2e0 from Eq. (141)

and we also set qG multiplied by the volume of the sphere

multiplied by KGC to a quantity called QG,

QG ¼ KGCVsphereqG: (236)

We then arrive at the force on an amount of extrinsic-

energy immersed within a region of ambient attached-aether

displacement

FG ¼ QGr/G: (237)

We will now evaluate the gravitational potential of a

uniform sphere of mass. In that case, we have (4/

3)pRS
3qES¼ cMSc2, or qES¼ 3cMSc2/4pRS

3, where RS is the

radius of the sphere, MS is the mass of the sphere, and qES is

the extrinsic-energy density inside of the sphere. Recalling

Eq. (193), qG¼ 3[KG1�KG2]qEq0/2, we can define qGS to

be related to qES as

qGS ¼ 3 KG1 � KG2½ �qESq0=2

¼ 9 KG1 � KG2½ �cMsc2q0=8pRS
3 r < RSð Þ:

(238)

Recall Eq. (208), r2/G ¼ �qG=e0. For the case of

spherical symmetry, the derivatives with respect to the angu-

lar variables vanish leaving Eq. (208) as

@2/G=@q
2 þ 2=rð Þ@/G=@r ¼ �qG=e0: (239)

The analysis will be divided into two regions, one inside

of RS where /G ¼ /SI and the other outside of RS where

/G ¼ /SO. Inside of RS the solution to Eq. (239) is

/SI ¼ �qGSr2=6e0: (240)

Now form r/SI,

r/SI ¼ �qGSr=3e0: (241)

We again recall Eq. (209), PGL � NGL ¼ �e0r/G=q0

and Eq. (211), NGL¼�PGL, and hence PGL � NGL ¼ 2PGL

¼ �e0r/G=q0, or

PGL ¼ �e0r/G=2q0: (242)

Since /SI is a specific form of /G,

PGLIN ¼ �e0r/SI=2q0 ¼ qGSr=6q0 ¼ �NGLIN: (243)

And now use Eq. (238) for qGS,

PGLIN ¼ �NGLIN ¼ ð KG1 � KG2½ �qES=4Þr

¼ ð3 KG1 � KG2½ �cMSc2=16pRS
3Þr: (244)

Outside of RS, qM and qG are zero, and the solution to

Eq. (239) is

/SO ¼ qGSRS
3=3re0 � qGSRS

2=2e0: (246)

Equation (246) involves the density qGS inside the

sphere because it sets the boundary condition. The density

qG outside the sphere is zero. Equation (246) leads to

r/SO ¼ �ðqGSRS
3=3r2e0Þr̂: (247)

Now use Eq. (242), PGL ¼ �e0r/G=2q0, where now

/SO is a specific form of /G,

PGLOUT ¼ �e0r/SO=2q0

¼ ðqGSRS
3=6r2q0Þr̂ ¼� NGLOUT: (248)
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Using Eq. (238) for qGS leaves

PGLOUT ¼ �NGLOUT ¼ ð3 KG1 � KG2½ �cMSc2=16pr2Þr̂:
(249)

Note that Eqs. (244) and (249) obtain equal values at

r¼RS, as they must.

It is possible to further manipulate Eq. (237) into a more

familiar form for the case of two interacting masses. Con-

sider two homogenous spheres S1 and S2, with masses M1

and M2, respectively, and radii R1 and R2, respectively.

Without loss of generality, we can consider S2 to be centered

at the origin. With S1 centered at r>R1þR2, Eq. (247)

informs that r/SO2 from M2 is r/SO2 ¼ �ðqGS2

R2
3=3r2e0Þr̂ and therefore Eq. (237) for the force between

the two masses becomes FGM1M2 ¼ QG1 r/SO2

¼ �ðQG1qGS2R2
3=3r2e0Þr̂. Recall Eq. (238), qGS¼ 3[KG1

�KG2]qESq0/2, to get FGM1M2¼QG1$/SO2 ¼�(QG1[KG1

�KG2]qE2R2
3q0/2r2e0)r̂. And with qE2¼ c2 M2c2/[(4/3)pR2

3]

this becomes FGM1M2 ¼�(3c2M2c2 QG1[KG1�KG2]q0/

8pr2e0)r̂. Next, recall from above Eq. (236) that QG is

KGCVsphereqG, or, in this case, using Eq. (193), QG1¼KGC

(4/3)pR1
3qG1¼KGC2pR1

3 [KG1�KG2] qE1q0. With qE1¼ c1

M1c2/[(4/3)pR1
3], QG1 ¼ 3KGC[KG1�KG2]q0c1 M1c2/2,

leaving

FME1ME2 ¼FGNEWTON

¼ �ð9c2M2c2KGC KG1 � KG2½ �2q0
2c1M1c2=16pr2e0Þr̂

¼ �ðGNc1M1c2M2=r2Þr̂:
(250)

In the low velocity limit, c1 ¼ c2 ¼ 1, and Eq. (250) is

recognized as Newton’s Law of Universal Gravitation where

GN is the combination of constants

GN ¼ 9KGC KG1 � KG2½ �2q0
2c4=16pe0

¼ 6:6743� 10�11Nm2=kg2: (251)

D.5. Field-masses

Here, we repeat Eqs. (214), (215), and (224) from Sec-

tion D.3

ETPGI ¼ KT0X0
2
h

1=2ð Þ þ KcjPGj=n0 þ Kc
2ðjPGj=n0Þ2

þ3dX=X0 þ 3KcjPGjdX=2X0n0

i
;

(214)

EQPGI ¼ 2KQ0=X0
2

� �h
1=2ð Þ � KcjPGj=n0

þKc
2jPGj2=n0

2 � 3dX=X0 þ 3KcjPGjdX=2X0n0

i
;

(215)

EcPGI¼KT0X0
2
h
�2Kc

2ðjPGj=n0Þ2�4Kc
2KGCðjPGj=n0Þ2

þ3KcjPGjdX=X0n0

i
:

(224)
The above equations are for energies inside of a sphere of

mass. Outside of a sphere of mass we derive similar equa-

tions in Ref. 1

ETPGO ¼ KT0X0
2
h

1=2ð Þ þ KcjPGj=n0

þKc
2ðjPGj=n0Þ2 � KcjPGjdX=4X0n0

i
; (H2)

EQPGO ¼ 2KQ0=X0
2

� �h
1=2ð Þ � KcjPGj=n0

þKc
2ðjPGj=n0Þ2 � KcjPGjdX=4X0n0

i
; (H4)

EcPGO¼KT0X0
2
h
�2Kc

2ðjPGj=n0Þ2�4Kc
2KGCðjPGj=n0Þ2

þKcjPGjdX=2X0n0

i
:

(H6)

We see that the portion of these equations not involving

dX/X0 are identical, and since dX/X0 is assumed small, we

drop the dX/X0 terms to arrive at equations which we will

now use both inside and outside of a sphere of mass

ETPG ¼ KT0X0
2

� �
1=2ð Þ þ KcjPGj=n0 þ Kc

2jPGj2=n0
2

h i
;

(253)

EQPG¼ 2KQ0=X0
2

� �
1=2ð Þ�KcjPGj=n0þKc

2jPGj2=n0
2

h i
;

(254)

EcPG ¼ �2KT0Kc
2ðX0=n0Þ2jPGj2

� 4Kc
2KGCKT0ðX0=n0Þ2jPGj2: (255)

At this point, we will now introduce the empirical Gravi-
tational-Mass Assignment:

The Gravitational-Mass Assignment. The tension-energy

ETPG (ETNG) leads to a positive (negative) gravitational-mass

while the quantum-energy EQPG (EQNG) leads to a negative

(positive) gravitational-mass.

It is shown in Ref. 1 that the second term of the gamma

energy comes half from a tension component and half from a

quantum-pressure component and so its contribution to grav-

itational mass vanishes, while the first term in the gamma

energy is a negative tension in the positive-attached-aether.

Summing all of the masses given by the gravitational mass

assignment then results in the following equation for the total

gravitational mass of the tension, quantum-pressure, and

gamma field energies in the positive-attached-aether

mPTQc ¼ 2 KT0X0
2=c2

� �
KcjPGj=n0 � Kc

2jPGj2=n0Þ2
h i

:

(256)

Similarly, for the negative-attached-aether, we obtain

mNTQc¼2 KT0X0
2=c2

� �
KcjNGj=n0�Kc

2jNGj2=n0
2

� �
:

(260)

Since NG and PG are purely longitudinal and with

Eq. (211), NGL¼�PGL, we get |NG|¼ |PG| and the total

field-mass is therefore
mTQc ¼ mPTQc þ mNTQc

¼ 4 KT0X0
2=c2

� �
KcjPGj=n0 � Kc

2jPGj2=n0
2

� �
:

(261)
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Next we divide by the volume of our analytic cell, X0
3,

and separate out two field-mass densities

dqM1 ¼ 4KT0KcjPGj=n0X0c2 ¼ KG3PG; (262)

(*see note after Eq. (263))

dqM2 ¼ �4Kc
2KT0jPGj2=X0n0

2c2 ¼ �KG4PG
2: (263)

[*Note that we must neglect any first-field-mass contri-

bution to PG when using Eq. (262) to find the first-field-mass

density.]

Now we will evaluate the effects of field-mass on the

force between two objects for the important case where the

mass of one object is much greater than the mass of

the other. We will use a coordinate system where r equals

zero in the center of the large mass. The large mass will be a

sphere of mass M and radius R, and the small mass will be a

sphere of mass m.

Equation (262) gives dqM1¼KG3PG as a positive field-

mass-density. For r<R, Eq. (244) informs that PGLIN

¼ (3[KG1�KG2]cMSc2/16pRS
3)r, and therefore, recalling

that PGLIN is the magnitude of PGLIN, dqM1¼KG3PGLIN

¼KG3(3[KG1�KG2]cMMc2/16pR3)r for r<R. The total

first-field-mass DM1IN within a sphere of radius r can be

found by integrating dqM1 within that sphere, DM1IN

¼ 4p
Ð
dqM1r2dr¼ 4p

Ð
KG3(3[KG1�KG2]cMMc2/16pR3)r3dr,

leaving

DM1IN ¼ KG3ð3 KG1 � KG2½ �cMMc2=16R3Þr4

¼ KG5ðcMM=R3Þr4 ðfor r < RÞ: (266)

In Eq. (266), KG5 is a combination of other constants

KG5 ¼ KG3ð3 KG1 � KG2½ �c2=16Þ: (267)

For r>R, Eq. (249) informs that PGLOUT¼ (3[KG1�
KG2]cMSc2/16pr2)r̂, and therefore, dqM1¼KG3PGLOUT

¼ 3KG3[KG1�KG2]cMMc2/16pr2 for r>R. The total first-

field-mass DM1SHELL within a spherical shell of outer radius

r and inner radius R can be found by integrating dqM1 within

that shell, DM1SHELL¼ 4p
Ð
dqM1 r2dr¼ 4p

Ð
(3KG3[KG1

�KG2]cMMc2/16pr2)r2dr¼ (3KG3[KG1�KG2]cMMc2/4)r
¼ 4KG5cMMr. Evaluating between R and r, DM1SHELL

¼ 4KG5cMM(r�R). To get the full mass inside of r, but

outside of R, we must also add the mass inside of R by

evaluating Eq. (266) at R to get

DM1OUT ¼ 4KG5cMMðr � RÞ þ KG5cMMR

¼ 4KG5cMMr � 3KG5cMMR ðfor r > RÞ:
(268)

Equation (263) gives dqM2¼�KG4PG
2 as a negative

field-mass-density. For r<R, Eq. (244) informs that

PGLIN¼ (3[KG1�KG2]cMSc2/16pRS
3)r, and therefore,

recalling that PGLIN is the magnitude of PGLIN, dqM2¼
�KG4PGLIN

2¼�KG4(3[KG1�KG2]cMMc2/16pR3)2r2 for r
<R. The total second-field-mass within a sphere of radius r,

DM2IN, is found by integrating dqM2 within the sphere,

DM2IN¼ 4p
Ð
dqM2r2dr ¼ 4p

Ð
�KG4 (3[KG1�KG2]cMMc2/

16pR3)2r4dr¼�4pKG4(3[KG1 �KG2]cM Mc2/16pR3)2r5/5, or

DM2IN ¼ �ð4pKG4=5Þð3 KG1 � KG2½ �cMMc2=16pR3Þ2r5

¼ �KG6ðcMM=R3Þ2r5 ðfor r < RÞ:
(269)

In Eq. (269), KG6 is a combination of other constants

KG6 ¼ ð4pKG4=5Þð3 KG1 � KG2½ �c2=16pÞ2

¼ 9KG4 KG1 � KG2½ �2c4=320p: (270)

For r>R, Eq. (249) informs that PGLOUT

¼ (3[KG1�KG2]cMSc2/16pr2)r̂, and therefore, dqM2 ¼�KG4

PG
2¼� KG4PGLOUT

2¼�KG4(3[KG1 �KG2]cMMc2/16pr2)2

for r>R. The total second-field-mass DM2SHELL within a

spherical shell of outer radius r and inner radius R can be

found by integrating dqM2 within that shell, DM2SHELL

¼ 4p
Ð
dqM2r2dr¼�4p

Ð
KG4(3[KG1�KG2]cMMc2/16pr2)2r2dr

¼ 4pKG4(3[KG1�KG2]cMMc2/16p)2/r¼ 5KG6(cMM)2/r evalu-

ated between R and r, and we must also add the mass from

Eq. (269) evaluated at R leaving DM2OUT¼ 5KG6(cMM)2/

r� 5KG6(cMM)2/R�KG6(cMM)2/R, or

DM2OUT¼ 5KG6ðcMMÞ2=r�6KG6ðcMMÞ2=R ðforr>RÞ:
(271)

Starting with Newtonian gravity, Eq. (250), and then

adding the first and second field-masses to M for the case

when r<R, we obtain the force on m:

FGIN¼�ðGNcmmcMM=R3Þ
rþKG5r2�KG6ðcMM=R3Þr3
� �

r̂ ðm�M; r <RÞ:
(272)

Equation (272) is relevant to the core of a galaxy when

we look at an individual star within the core. In this case, the

whole galactic core is the larger mass, and the individual star

is the smaller mass.

Again starting with Newtonian gravity, Eq. (250), and

then adding the first and second field-masses to M for the

case when r>R, we define an effective mass MEFF and get

the force on m,

MEFF ¼ cMM � 3KG5cMMR� 6KG6cM
2M2=R; (274)

FGOUT ¼ �GNcmmðMEFF=r2 þ 4KG5cMM=r

þ 5KG6cM
2M2=r3Þr̂ ðm� M; r > RÞ:

(275)

D.6. Dark matter

Consider a force on a star in a spiral galaxy far from the

galactic core. With the mass of the galactic core much

greater than the mass of the star, Eq. (275) applies. We can

see that at large r, the term proportional to 1/r eventually

dominates. Equating the centrifugal force mv2/r to a gravita-

tional force proportional to 1/r we see that the velocity of
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distant stellar orbits will be independent of r, consistent with

observations. Presently, this constant velocity is believed to

indicate the existence of a substance called dark matter.

Since the 1/r term in Eq. (275) was derived from the first-

field-mass, we see that the first-field-mass is a major contrib-

utor to what is now known as dark matter.

Further observations of dark matter come from ultra dif-

fuse galaxies, or UDGs. Some UDGs have very little dark

matter compared to most galaxies.20 This can be readily

understood if some UDGs have no large central mass such as

what is now called a black hole. If there is a large central

mass, then Eq. (275) applies and there will be a large amount

of dark matter. If there is no large central mass, then Eq.

(272) applies and there will be very little dark matter.

Equation (268) gives a first-field-mass that grows with

radius if there is a large galactic central mass. If this scaling

were to go on indefinitely, the dark mass associated with

such galaxies would become very large indeed. However,

here we recall that Eq. (268) only applies if one mass is

much smaller than the other mass. For the case of two neigh-

boring galaxies, this condition no longer holds. Also,

between such galaxies there will be a location where the

aetherial displacement PG is zero, and by Eq. (262) we see

that the first-field-mass will be zero at such a location. There-

fore, the first-field-mass will not continue to increase outside

of galaxies. It will instead appear within them, but be dimin-

ished between them, which is again consistent with

observations.

Neglecting the 1/r3 term, we will now set mv2/r equal to

the force of Eq. (275) to solve for KG5. With cm¼ cM¼ 1

and MEFF¼M, mv2/r¼GNmM(1/r2þ 4KG5/r), or v2¼GN

M(1/rþ 4KG5), or,

KG5 ¼ v2 � GNM=r
� �

=4GNM ¼ 9:90� 10�22 m�1

� 10�21 m�1:

(276)

The second equation in Eq. (276) results from substitut-

ing in v¼ 1.93� 105 m/s at 80 kpc from Gnedin, et al.,21

r¼ 80 kpc¼ 2.469� 1021 m, and M¼ 1.279� 1041 kg from

McMillan22 for the mass of the Milky Way. We also use the

standard value of GN¼ 6.674� 10�11 m3/kg s2.

The connection between the theory presented herein and

observations is often the same as that given by presently pre-

vailing theory, as we have derived Maxwell’s equations, the

Lorentz force equation, and Newtonian gravity. But now we

see that our theory makes a new and specifically testable pre-

diction for where dark matter should exist. One needs to simply

calculate PG from relevant massive bodies, then calculate dqM1

from Eq. (262), and then integrate dqM1 over the region of

interest to find the amount of dark matter within that region.

D.7. Classic tests of general relativity

Any new theory of gravity must of course agree with the

classic tests of general relativity just as well as general rela-

tivity does. The first classic test of general relativity involves

the gravitational redshift. To calculate it from the quantum

luminiferous aether we begin with Eq. (250), and we then set

one mass equal to a stellar mass and the other mass equal to

the energy of a photon (hf) divided by c2. By integrating the

force GNMSTARhf/c2r2 over the distance traveled, we can

find the energy change as the photon moves radially outward

from the surface (at R0) of the star: EPHOTON(r)

�EPHOTON(R0)¼GNMSTARhf/c2r�GNMSTARhf/c2R0. We

then assign the photon energy at r¼ infinity to hf and obtain

the Newtonian limit for the redshift EPHOTON(R0)

¼ hfþGNMSTARhf/R0c2¼ hf(1þGNMSTAR/R0c2).

The second classic test of general relativity involves

advances of the perihelia. To calculate those advances, we

numerically integrated Eq. (275). Results of the numerical

integration are presented in Table I.

To achieve the results in Table I, we used the value for

KG5 from Eq. (276) and then we set KG6 so that it obtained a

good fit to the data

KG6 ¼ 8:9167� 10�28 m=kg: (293)

Table I refers to work done by Pitjeva23 who included

over 250 parameters in a very complex numerical calcula-

tion. On the other hand, we have only used a very simple

two-body calculation to obtain our results. Nonetheless, our

simplified results are substantially in agreement with Pitjeva

and general relativity.

The third classic test of general relativity involves the

bending of light. It is well known that light bends in gravita-

tional fields two times more than a na€ıve Newtonian

approach would suggest.24 Up to this point in our develop-

ment, we have not yet proposed a gravitational flow law, but

there must of course be one and so we propose:

The extrinsic-energy flow speculation. When extrinsic-

energy flows through the aether, the tension in the positive

(negative) attached-aether is reduced (increased) in the direc-

tions perpendicular to the flow with the magnitude of reduc-

tion (increase) proportional to the flow.

The above assertion is called a speculation rather than a

law since more than one speculation may work to achieve

the empirical result.

Light bending is treated in full detail in Ref. 1 and here

we will just give an overview. The gravitational flow specu-

lation results in a change to the force due to tension that is

different in Z than in X and Y:

FTPZ ¼ KTPXQ ¼ KT0ð1� KG1qEÞXQ; (294)

FTNZ ¼ KTNXQ ¼ KT0ð1 � KG2qEÞXQ; (295)

FTPX ¼ FTPY ¼ KT0ð1� KG1qEÞXQ � KT0KF4qFEXQ;

(296)

FTNX ¼ FTNY ¼ KT0ð1� KG2qEÞXQ þ KT0KF4qFEXQ:

(297)

The forces of Eqs. (294)–(297) lead to energies and cube

distortions within the analytic-cubes, and this is what leads

to light bending that is a factor of two greater than the New-

tonian amount. The light bending analysis in Ref. 1 is similar

to what we have done with the Coulomb force and Newto-

nian Gravity. Slices and strips within a spherical shell are

made, and then individual cubes within the strips are
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evaluated. The energy of each cell is calculated both with

and without a virtual displacement. The force on the sphere

is found by dividing the energy difference caused by the vir-

tual displacement by the amount of that virtual displacement.

The resulting force leads to the empirical light bending for-

mula (again, see Ref. 1 for details).

While not one of the original tests of general relativity,

the Shapiro effect25 is often called the fourth classic test.

This test involves the changing light speed as light goes past

a massive object such as the sun. Recall now Eq. (107),

T0¼m0c2. Throughout our evaluations, we have seen that

various aetherial parameters can vary depending upon condi-

tions, and so we modify Eq. (107) to

VLIGHT ¼ ðT=mÞ1=2: (342)

In Eq. (342), T and m may vary from their nominal val-

ues. In Ref. 1, we derive

TP ¼ KT0=X0ð Þ 1 � 2KcjPGj=n0 � 4KcKGCjPGj=n0½ �;
(343)

TN ¼ KT0=X0ð Þ 1� 2KcjNGj=n0 � 4KcKGCjNGj=n0½ �:
(344)

We then go on to propose:

The aetherial inertial-mass assignment. The ethereal

inertial-mass density equals the field energy density plus the

gravitational potential energy density divided by c2.

Now recall Eq. (22), KT0X0
2¼ 2KQ0/X0

2, Eq. (11),

ET¼ (1/2)KT0XQ
2, and Eq. (12), EQ¼KQ0/XQ

2. We see that

the sum of the quantum energy and tension energy is

EQþET¼KT0X0
2. Recall again Eq. (107), T0¼m0c2, and

also recall Eq. (15) FT0¼KT0XQ. T0 is the tension force per

unit area, T0¼KT0XQ/XQ
2¼KT0/XQ and m0c2 is the equiva-

lent mass-energy per unit volume which is (EQþET)/

X0
3¼KT0X0

2/X0
3¼KT0/X0. Therefore, we see that Eq. (107)

simply results from the leading term of the field energy.

Now the gravitational potential energy is EP/¼EN/

¼q0/, where q0 is the aetherial density and / is the gravita-

tional potential. From Eq. (246), /SO¼ qGSRS
3/3re0

�qGSRS
2/2e0 and resetting the arbitrary constant so that / is

zero at infinity we get a potential of /SO¼ qGSRS
3/3re0.

Using Eq. (238), qGS¼ 3[KG1�KG2]qESq0/2¼ 9[KG1�KG2]

cMSc2q0/8pRS
3, we get /¼ 3[KG1�KG2]cMSc2q0/8pe0r

¼K//q0r, where we have defined K/¼ 3[KG1�KG2]

cMSc2q0
2/8pe0. This leaves

EP/ ¼ EN/ ¼ q0/ ¼ K/=r: (347)

By our inertial mass assignment, using Eqs. (225) and

(347), we get

m ¼ KT0=X0ð Þð1� 4Kc
2KGCjPGj2=n0

2Þ þ K/=r
h i

=c2:

(348)

We can now substitute Eqs. (343) and (348) into Eq.

(342) to form the expression for the speed of light as it

passes near the sun

VLIGHT ¼ T=mð Þ1=2

¼ cf KT0=X0ð Þ 1� 2KcjPGj=n0½
� 4KcKGCjPGj=n0�= KT0=X0ð Þ½
1� 4Kc

2KGCjPGj2=n0
2

� �
þ K/=r�g1=2 : (349)

Near the sun we assume KT0=X0 � Ku=r �
ðKT0=X0Þ2KcjPj=n0 � ðKT0=X0Þ4Kc

2KGCjPGj2=n0
2 and

VLIGHT � c 1� K/=2 KT0=X0ð Þr
� �

: (350)

In Fig. 10, M is the planet Mercury, E is the earth, and S
is the sun. We will assume that the deflection of light by the

sun is small enough that we can consider the path to be pre-

dominantly along the x axis of the figure. We then have

dx=dt ¼ VLIGHT � c½1� Ku=2ðKT0=X0Þr�, which for a small

incremental spatial advance dx we can rearrange to

dt � ðdx=cÞ½1þ Ku=2ðKT0=X0Þr�. From this, and noting that

r¼ (x2þRMIN
2)1/2 all along the path, the time for light to

go from Mercury to Earth is t ¼
Ð

dt ¼ ð1=cÞ
Ð
½1þ Ku=2

ðKT0=X0Þðx2 þ RMIN
2Þ1=2�dx. Evaluating the integral,

TME ¼ x=cþ ðKfX0=2cKT0Þ ln x2 þ RMIN
2

� �1=2 þ x

h i
:

(351)

TABLE I. Competing calculations of “anomalous” Perihelion advances.

Planet Radius a (106 km) Period T (days) Pitjeva Eq. (275) W/O KG5 Eq. (275) With KG5

Mercury 57.9 88.0 42.976 6 0.005 42.977 42.977

Venus 108.2 224.7 8.644 6 0.033 8.623 8.589

Earth 149.6 365.2 3.846 6 0.007 3.837 3.804

Mars 227.9 687.0 1.343 6 0.007 1.351 1.322

Jupiter 778.6 4331 0.067 6 0.093 0.0622 0.0453

Saturn 1433.5 10 747 �0.010 6 0.015 0.0135 0.001 04

Uranus 2872.5 30 589 �3.89 6 3.90 0.002 38 �0.006 46

Neptune 4495.1 59 800 �4.44 6 5.40 7.75� 10�4 �0.006 30

Pluto 5906.4 90 560 2.84 6 4.51 4.17� 10�4 �0.005 65

FIG. 10. Geometry of relevance for calculating the Shapiro effect.
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We now evaluate the delay time of Eq. (351) between

�XM and XE,

TDELAY ¼ ðK/X0=2cKT0Þ ln RE þ XEð Þ= RM � XMð Þ½ �:
(352)

When constants are fit, Eq. (352) is the same equation as

that given by general relativity in the low field limit, which

is in agreement with experimental data for all values of

RMIN.

While not a classic test of general relativity, gravita-

tional waves are also important. Recall that for electromag-

netism we have derived Eq. (104), m0ð@2P=@t2Þ
¼ T0r2P� KF3JT, where m0ð@2P=@t2Þ is the inertial-mass

density multiplied by the acceleration, T0r2P is the tension

force, and KF3JT is the detached-aether flow force. Follow-

ing the same reasoning and derivation, for gravitational dis-

turbances we get m0ð@2PG=@t2Þ ¼ T0r2 PG þ FGFP, where

FGFP is the extrinsic-energy flow force on the positive-

attached-aether. In both the electromagnetic and gravity

cases, we will get waves upon the aether in regions where

KF3JT and FGFP are zero, respectively. And since the mass

and tension densities are the same aetherial attributes for

both cases, we see that gravity waves should move at the

same speed that light waves do.

PART E. DENSE STELLAR OBJECTS

Unlike the theory of general relativity, we have no sin-

gularity and no concept of a “black hole.” However, since

gravitational fields of dense, ultramassive objects have been

observed near the center of many galaxies, it is important to

have some modeling of what these objects might be.

Reference 1 discusses dense stellar objects in an appen-

dix since it does not contain the rigor of the main paper. The

goal of the study is to obtain a simple modeling for dense

stellar objects that achieves a rough quantitative agreement

with the data so that the model can explore the effects that

field-mass has on those objects. An approach to modeling of

dense stellar objects is proposed that involves analyzing

small cubes of matter within white dwarfs and neutron stars,

rather than treating the whole star as a single degenerate

quantum system. The argument is made that collisions

between the fermions of a dense star will lead to a collapse

of the fermion’s wave function, and these collapses therefore

form cubic square-well boundaries. Within such square-

wells, many fermions can be in degenerate states, but far less

than for an entire star. The analysis then develops an expres-

sion for the quantum-pressure at the walls of the cube, and

this can then be used along with the equation of hydrostatic

equilibrium to develop numerical integration programs to

calculate the mass, radius and density profile of dense stellar

objects. By including an empirical adjustment factor of 1.2,

those numerical programs give an excellent match to present

observations for the case of white dwarfs. The factor of 1.2

is reasonable, since we neglect the effects of fusion, internal

Coulomb interactions, star rotation, and thermal effects in

our modeling.

Our numerical model is then used to study the effects of

the field-masses. It is determined that the first-field-mass is

not significant. However, the second-field-mass can become

important. Recall Eq. (271), DM2OUT ¼ 5KG6ðcMMÞ2=
r � 6KG6ðcMMÞ2=R, for r>R. Evaluating Eq. (271) at the

edge of the sphere shows that DM2OUT ¼ �KG6ðcMMÞ2=R
when r¼R. Hence, when M is large and R is small, the sec-

ond-field-mass may become quite large. In Ref. 1, we find

that the second-field-mass is of the order of 0.1% of the stel-

lar mass for typical white dwarf masses.

For neutron stars, the mass density gets much larger and

so does the effect of the negative second-field-mass. Table

J11 presents results for a simplistic numerical evaluation of

various neutron stars. All numerical calculations begin at the

center of the star and integrate outward. By increasing the

assumed starting density different masses and radii are pre-

dicted for the neutron stars. It is seen that the negative sec-

ond-field-mass becomes very nearly equal to the normal

mass as the neutron stars become more massive. Also, it is

seen toward the bottom of the table that even with enormous

central densities, the observed net mass remains quite

limited.

Of course, it may be possible that something changes

inside of neutron stars when pressures get very high. Two

possibilities come to mind quickly: (1) we can speculate that

very high pressure will force matter into a state made up of

exotic particles; and/or (2) we can speculate that the gravita-

tional force equation becomes altered as pressures become

very high. The appendix in Ref. 1 evaluates both of these

speculations. Crushing the neutrons into a single new type of

exotic matter does not fit observations. (It is possible that

crushing matter into several different types of exotic matter

over different pressure regions would fit observations, but

TABLE J11. Results of simplistic numerical integrations for a neutron star, various qWD0 values.

Evaluation point qWD0 (kg/m3) Radius (m) Positive mass (Ms) Negative mass (Ms) Net mass (Ms)

Neutron-degeneracy/free space boundary 1� 1018 17 209 1.3191 0.4414 0.8777

	10 times greater than the electron-degeneracy/free space boundary 1� 1018 173 810 1.3191 0.6980 0.6211

Neutron-degeneracy/free space boundary 1� 1019 16 234 5.6251 3.8744 1.7508

	10 times greater than the electron-degeneracy/free space boundary 1� 1019 163 963 5.6251 4.6975 0.9277

Neutron-degeneracy/free space boundary 1� 1021 19 600 99.455 95.285 4.169

10 times greater than the electron-degeneracy/free space boundary 1� 1021 196 000 99.455 97.962 1.493

Neutron-degeneracy/free space boundary 1� 1024 22 300 2274 2268 6.19

10 times greater than the electron-degeneracy/free space boundary 1� 1024 223 000 2274 2272 1.84

Neutron-degeneracy/free space boundary 1� 1027 26 009 118 571 118562 9.20

	10 times greater than the electron-degeneracy/free space boundary 1� 1027 262 692 118 571 118569 2.26
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this speculation was not studied.) However, a simple pro-

posal that PG and NG saturate at high pressures does fit

observed data, as shown in Tables J13–J15. (The gMult fac-

tor is related to the point where saturation occurs.)

An ultra-massive object named Sgr A* is observed at the

center of the Milky Way galaxy. A recent measurement26

gives a diameter of 51.8 larc s (6.18� 1010 m) for the cen-

tral ring around Sgr A*, and it is seen that the radii calcu-

lated for Sgr A* in Tables J13–J15 are within that value.

However, one aspect of the results shown in Tables J13–J15

is quite significant, and that is the amount of negative sec-

ond-field-mass predicted to exist within supermassive

objects. The tables indicate that the vast majority of the

hadronic mass is cancelled out by the second-field-mass in

supermassive neutron stars. Of course, the model used to

produce Tables J13–J15 is only speculative and other models

are certainly possible.

PART F. CLOSING COMMENTS

F.1. Present problems of physics are addressed

Above we see that the quantum luminiferous aether

addresses many of the problems of present physics. By step-

ping away from the point-like theory of relativity, the infini-

ties associated with points are no longer a fundamental issue.

We have presented a speculative alternative to one such

infinity, as we propose a saturation effect that leads to super-

massive neutron stars as an alternative to relativity’s black

holes. There is no longer a cosmological constant to be con-

cerned with. Dark matter is understood. And by returning to

a flat and Euclidean space, absolute time, and absolute simul-

taneity, we can easily understand quantum mechanics as an

instantaneous collapse of wave functions. (The concept of

“instantaneous” is once again valid.)

F.2. An understandable physical model

Beyond addressing problems that are acknowledged by

the present physics community, the model presented herein

is also a return to a physical model of our world, in contrast

to the present emphasis on mere mathematical models. This

makes physics understandable once again. Equations simply

accepted as “nature’s laws,” which include Maxwell’s equa-

tions, the Lorentz force equation, and Newton’s equation of

universal gravitation, are all found to have a common physi-

cal underpinning.

To see some of the physical interpretations that the the-

ory herein enables, we begin by recalling Poisson’s equation,

Eq. (55), r2/ ¼ �qD=e0. In Eq. (55) and elsewhere herein,

qD is identified as free, detached-aether. Conventionally qD

is identified as electric charge. From this observation, we see

that electric charge is an amount of aether that has become

detached from the predominant attached-aether. Positive-

aether includes positive electric charge and negative-aether

is negative electric charge. This identification shows that the

positive (and separately, the negative) attached-aether

includes an infinite sea of charge, which is internally

attached and in the state of a solid. And since electric current

is understood as the motion of electric charge, electric cur-

rents are now identified as moving detached-aether.

Physical interpretations can also be found for the static

electric field, the vector potential, and light. The scalar

potential / satisfies Eq. (56), PL � NL ¼ rðwP � wNÞ
¼ �e0r/=q0.With the static electric field E ¼ �r/ from

Eq. (123), this reveals that the static electric field is simply

proportional to the longitudinal aetherial separation PL�NL.

Next, consider Eq. (114), PT ¼ �NT ¼ �KF3A=l0T0. We

see that the vector potential A is proportional to the trans-

verse displacement of the aether from its nominal position.

And of course, light is now identified as an aetherial wave,

just as the classical theorists anticipated.

F.3. Topics for future consideration

This paper has presented the theoretical foundations for

the quantum luminiferous aether, and while it accomplishes

much, there are several areas where future work can and

should be done. One area for future study involves doing a

deeper analysis. In this work we have shown that Maxwell’s

equations, the Lorentz force equation, and the equations of

gravity all result from an aetherial model wherein we have

TABLE J13. Results of numerical integration assuming a saturation effect for various initial densities, gMult¼ 1.

Description qNS0 (kg/m3) Stellar radius (m) Positive mass (Ms) Negative mass (Ms) Net mass (Ms)

0.75 Ms N-Star 4.1� 1017 20 877 1.345 0.5901 0.7548

1.9 Ms N-Star 5.0� 1017 30 639 4.765 2.861 1.904

46 Ms N-Star 8.0� 1017 244 681 2422 2377 45.92

332 Ms N-Star 1.0� 1018 1.511� 106 570 184 569 852 331.8

Sgr A* 1.62� 1018 2.297� 109 2.005� 1015 2.005� 1015 3.807� 106

Andromeda central star 1.74� 1018 1.220� 1010 3.001� 1017 3.001� 1017 9.076� 107

TON 618 1.96� 1018 3.138� 1011 5.110� 1021 5.110� 1021 5.758� 1010

TABLE J14. Results of numerical integration assuming a saturation effect for various initial densities, gMult¼ 0.3.

Description qNS0 (kg/m3) Stellar radius (m) Positive mass (Ms) Negative mass (Ms) Net mass (Ms)

1.0 Ms N-Star 1.05� 1017 33 757 1.405 0.4199 0.9849

Sgr A* 3.6� 1017 2.778� 109 7.823� 1014 7.823� 1014 4.230� 106

TON 618 4.35� 1017 3.977� 1011 2.294� 1021 2.294� 1021 6.184� 1010
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kept terms to first order in non-vanishing quantities. Future

efforts may involve analyses that include the discarded

terms.

Future efforts may also involve more analysis and obser-

vation regarding the aetherial quantum itself. Nothing in the

theory presently determines the size of the aetherial quan-

tum: the aetherial quantum size nQ is one of only three free

parameters for our theory, the other two being the coupling

parameters KGC and Kc (see Ref. 1). Since Maxwell’s equa-

tions coupled with quantum mechanics gives such an excel-

lent treatment of the hydrogen atom, we can speculate that

nQ is sub-atomic, but more work needs to be done concern-

ing a better determination of nQ.

A reviewer of this work mentioned that the cubic nature

of the quanta shown in Fig. 1 may imply that the aether has

an underlying lattice structure, and that this might lead to

artifacts that can be observed experimentally. If each aethe-

rial quantum is in its own cubic potential well, then such arti-

facts may indeed be found. However, there is another

possibility. If we postulate that quantum states collapse only

when a momentum transfer occurs, then the boundary of the

bounding cubic square-well will be determined only when

momentum transfers are robust enough to define the square-

well boundaries. In this case, this larger cubic square-well

may contain many aetherial quanta within a degenerate

quantum system. And in this case, the quantum shown in

Fig. 1 should be viewed as a representative quantum, with

properties set so that a collection of such representative

cubes yields the same tension, quantum, delta, and gamma

force fields as what are found at the boundaries of the larger

well. In the latter case, no artifacts of a lattice are expected.

(In Ref. 1, a representative quantum cube is used to analyze

an electron degenerate system in white dwarfs; please refer

to Ref. 1 for details on this analytic approach, as this

approach can be applied to the aetherial quanta as well.) In

either interpretation of Fig. 1 (a single quantum in its own

cubic square-well or a representative quantum within a larger

cubic square-well), the derivations of the fundamental phys-

ics equations follow. The question for further research is

which of these two interpretations best represents nature.

Another reviewer of this work raised the issue as to why

positive-detached-aether is predominantly contained within

protons while negative-detached-aether is predominantly

contained within much lighter electrons, and under what con-

ditions detached-aether might occur elsewhere. Of course,

negative-detached-aether also occurs in anti-protons, while

positive-detached-aether occurs in positrons, and there is a

large particle zoo of other particles that contain electric

charge. Why the detached-aether forms within certain spe-

cific particles is a question for future research.

Other topics for future studies include those related to cos-

mology such as dark energy, the big bang, gravitational lens-

ing by galaxies, anisotropies in the cosmic microwave

background, inflation, and the baryonic Tully–Fisher relation.

While all of these topics are important, they predominantly

involve observations from very far away. Note that the obser-

vations themselves are presently interpreted by assuming that

general relativity is correct, and this then leads to certain con-

clusions which may no longer be accurate once when we con-

sider them under the aether-based theory described herein.
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