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Abstract. A two-component, quantum luminiferous aether is proposed to exist. Simple postulates 

are hypothesized for the aetherial quantum pressure, tension and flows. Some physical laws and 

assignments are proposed. In its nominal state, each aether component is an internally-attached 

solid. A delta-force is shown to result from sources of detached-aether, and a gamma-force is 

shown to result from sources of energy or mass. By analyzing an elemental aetherial quantum in 

the presence of the forces, physical laws and assignments, rigorous derivations are shown to lead 

to Maxwell’s Equations, the Lorentz Force Equation and Newton’s Law of Universal Gravitation. 

The derivations also reveal two field-masses. The first field-mass is identified as dark matter. The 

second field-mass is shown to contribute to orbital motions and it also results in significant 

negative-mass within and surrounding dense stellar objects. The theory is shown to successfully 

meet the classic tests of General Relativity: calculations for the advance of the perihelions, the 

Shapiro effect, the gravitational redshift and the bending of light in gravitational fields all agree 

with experiment. Gravitational waves are understood. A new approach for analyzing the 

hydrostatic equilibrium of white dwarfs and neutron stars is proposed. The theory has no 

singularity; instead of black-holes, speculative alternative models for super-massive objects are 

proposed and evaluated. 
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Part A. Introduction. 

A.1 – The Historical Setting for This Work 

A.1.1. The Classical Aether. The classical approach to physics involved two critical assumptions: 

1) space and time are absolute; and 2) an objective reality exists. The goal of classical physics was 

to hypothesize physical models of the assumed objective reality, rigorously derive mathematical 

equations resulting from those models, and then test those equations for veracity. If the tests 

showed agreement with the equations, the underlying model was accepted; if any one test showed 

disagreement with the equations, then the underlying model needed to be modified or abandoned. 

By repeating the process of modeling, derivation, and testing, the classical physicists believed that 

we were obtaining an ever-closer approximation to nature’s underlying reality. 

Between the 17th and 19th centuries numerous theories of light were put forth that involved a 

substance called “the aether” that was postulated to exist throughout space and that participated in 

light propagation. In the 19th century Maxwell developed a set of equations that showed light to 

be a wave moving at speed c. Under Newtonian theory (which assumed Galilean relativity) there 

can only be one frame of reference wherein the speed can attain any specific value, and therefore 

it was assumed that Maxwell’s equations were the description of nature as seen by observers at 

rest with the aether.  

Under Galilean relativity, observers moving with respect to the aether should see a velocity of light 

that is the vector addition of the aetherial velocity of light with their own aetherial velocity, and 

this led to a proposal to measure the earth’s velocity through the aether. The experiment was 

performed by Michelson and Morley[1], with the surprising result that no motion through the 

aether was found. The Michelson-Morley null result could be explained by a proposal that physical 
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objects shrink in their direction of motion through the aether. Other experiments also showed 

evidence that clocks ran slow when they traveled through the aether. 

Lorentz, Larmor, Fitzgerald and Poincare all contributed to the development of the Lorentz Aether 

Theory[2, 3], wherein “true” time and space could only be measured at rest with respect to the 

aether. For observers moving through the aether, “fictitious” temporal and spatial measurements 

would be made, as their instruments would be affected by their motion. The equations that 

transform from one set of moving observations to another have come to be known as the Lorentz 

Transformation, and all experiments done to date are consistent with those equations. 

While the Lorentz Aether Theory was compatible with all experimental results as well as with 

Maxwell’s Equations, a satisfactory derivation of Maxwell’s Equations from aetherial assumptions 

and postulates was never completed. Many attempts were made at such a derivation, including 

several by Maxwell himself, but as of 1905 there was growing disillusionment with the entire 

Lorentz Aether Theory, primarily due to the ad hoc nature of the length contraction and time 

dilation proposals. 

A.1.2. Special Relativity Replaces Absolute Space and Time. Einstein’s Special Relativity[4] 

was a radical departure from classical physical theory. Poincare had proposed that the principle of 

relativity and a constant speed of light can be used to derive the Lorentz Transformation, and hence 

such a theory was consistent with all experimental results. But Poincare did not take the crucial 

step of calling into question the axioms of absolute space and time. It was Einstein who made the 

critical break with classical thought, following the philosophy of Hume and Mach. Hume and 

Mach made the philosophical point that all we can truly trust are our observations, and that while 

underlying beliefs (such as physical models and axioms) might usefully be in agreement with the 

observations, that does not mean that the underlying beliefs can themselves be trusted. Only 
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observation can be trusted. Einstein extended the work of Hume and Mach to observe that time 

and space might not be absolute. Einstein interpreted the Lorentz Transformations not as relating 

“fictitious” time and space to “real” time and space, but rather that all reference frames are equally 

“real”. 

The approach of Einstein was to replace the classical approach of using postulated physical models 

within an absolute space and time by an approach that uses postulated principles that hold equally 

well in all frames of reference. Einstein’s approach has the advantage of intellectual simplicity, 

and since it led to the same Lorentz Transformation as did the more cumbersome and ad hoc 

Lorentz Aether Theory, the latter was eventually abandoned. Serious work on the aether ceased. 

A.1.3. Problems with Relativity. While relativity results in a simple formulation for physics, it is 

not compatible with quantum mechanics. One of the earliest papers on this incompatibility was by 

Einstein, Podolski and Rosen (EPR)[5]. Bell extended the EPR arguments to testable 

conditions[6], and Aspect, Dalibard and Roger’s (ADR) tests of Bell’s theorem[7] showed the 

essential correctness of quantum mechanics. In order to save relativity in light of the ADR results, 

ideas such as multiple universes or an abandonment of realism have been considered. Relativity 

also leads to difficulties in understanding simple quantum mechanical results such as the two-slit 

experiment. All of the problems of understanding quantum mechanics can be easily eliminated if 

we assume an instantaneous collapse of a finite wave function, but since relativity has relative 

simultaneity, instantaneous collapse over a distance is not allowed. The problem is often called 

“the problem of quantum mechanics”, but it could equally be called “the problem of realism” or 

“the problem of relativity”. Given the experimental evidence, physics is faced with the following 

choice: Relativity, quantum mechanics, and realism: pick two. Since both relativity and quantum 

mechanics are in agreement with all experimental data, the position most often taken is to call 
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realism into question. But if we give up realism, the next philosophical question becomes what are 

we replacing realism with? Are we going to just simply map data to increasingly complex 

empirical formulas and stop asking what lies beneath those equations? 

Also relevant to philosophy is that the presently prevailing relativistic paradigm simply accepts 

Maxwell’s Equations and the Lorentz Force Equation as “nature’s laws”; no attempt is made to 

find any underlying basis for those critical fundamental equations. And those equations have a 

rather large amount of complexity, with many interacting terms. If two simple empirical ad hoc 

proposals (length contraction and time dilation) are considered enough to abandon absolute space 

and time in favor of relativity, then how can we blindly accept the far more complex ad hoc 

proposals buried within Maxwell’s Equations and the Lorentz Force Equation? 

A.1.4. A Return to Realism, Absolute Space and Time, and the Luminiferous Aether. In this 

work we will return to the classical assumptions of realism and an absolute space and time, and 

we propose a new physical model for the luminiferous aether. It will be shown that a physical 

model consisting of simple assumptions and postulates lead to a complete derivation of the known 

equations for electrodynamics, as Maxwell’s Equations and the Lorentz force equation will be 

derived. With a few additional assumptions, a new equation for gravitation will also be derived. 
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A.2 – Preliminaries: Approach and Scope of this Work 

A.2.1. Approach to Notation. In this work, forces and other vectors will be denoted in bold, such 

as FX, FY, and FZ. Scalars, such as the magnitude of the tension, are denoted in normal weight 

font, such as T0. Unit vectors in the x, y and z directions are i, j and k, respectively. Coming up 

with good notation is challenging due to the large number of entities involved in electromagnetism 

and gravity. Where possible, the contemporary notations are used for various quantities and this 

consumes most of the English alphabet and a significant amount of the Greek one. Hence, the 

liberal use of subscripts is employed herein to attempt to clarify many specific physical entities.  

A.2.2. Verbosity. This work is done in a verbose mode, as it often includes many intermediate 

algebraic steps in order to help the reader avoid turning to pen and paper or a word processor in 

order to get from one equation to the next. Also, certain very similar treatments appear in a rather 

repetitive way for the sake of completeness. (Some of the repetitive material is relegated to 

Appendices F, G and H.) This results in a rather long work, but one that is both more complete 

and easier to follow than a terse work would be. 

A.2.3. A Primary Analysis from the Aetherial Rest Frame. Since Einstein’s Special Relativity 

and the Lorentz Aether Theory agree that transformation between frames results in the equations 

of electrodynamics retaining their form, we are free to choose the aether rest frame for our 

development from the standpoint of electrodynamics, and that is what is done below. We also 

choose the aether rest frame for our analysis of gravitation, and will discuss ramifications of that 

choice in Appendix I. 
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A.3 – A Theory Based Upon Reality of Fields – Continuum Analysis 

Within the Quantum 

Relativity does not allow actions at a distance, because to do so conflicts with causality. To see 

this, simply consider two events that happen at points AE and BE simultaneously in one reference 

frame. In another reference frame the event at AE will happen earlier than the one at BE. In yet 

another reference frame the event at AE will happen later than the one at BE. If we consider a 

photon collapsing on a wall in the two-slit experiment, then the problem is that a collapse at point 

AE must somehow preclude a collapse at point BE, yet, in some reference frame BE occurs before 

AE, thus violating causality. To evade this logical difficulty, one explanation is to think of the 

quantum wavefunction as being some sort of magic mathematical guide for underlying point-like 

entities. However, as discussed above, when a mathematical quantum collapse occurs we have 

difficulties describing things with an assumption of an underlying realism. However, by setting 

relativity aside we can return to a simpler theoretical footing that allows for finite-sized entities 

leaving no problems with causality nor realism. 

In this work, we assume a philosophy that quantum physics arises out of the individual nature of 

physical entities. That is, all physical entities can be divided into finite-sized packets (quanta) but 

those quanta cannot be further divided. It is well known (even celebrated) that experimental 

detection of small subsections of the quanta cannot be done without altering what we are trying to 

measure. Nonetheless, we can still assume (and do so here) that the physical quantum is itself made 

up of a continuous field and that we can analyze subsections of that field, and that we can do so 

down to any arbitrarily small size. 
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A.4 – The Aetherial Hypothesis 

A.4.1. Basic Assumptions. It is assumed that Newton’s Force Law, F = dp/dt is correct, where F 

is the force, p is the momentum and t is time. The usual definitions are assumed, where the 

momentum is mc,  = (1 – 2)-1/2,  = v/c, m is mass, v is the distance traveled per unit time, and 

c is the speed of light. Newton’s Law that every action has an equal and opposite reaction is 

assumed to be valid. The Pauli exclusion rule and Schrödinger’s Equation from standard quantum 

mechanics are assumed to be valid. And the relation E = mc2 between mass and energy is also 

assumed to be valid. 

A.4.2. The Assumed Physical Model. It is postulated that in the absence of sources and waves, a 

homogeneous, isotropic, continuous, fermionic, two-component solid-aether occupies space. One 

component of the aether is called positive-aether; the other is called negative-aether. In the nominal 

state, each solid-aether component is internally attached; this is called attached-aether. However, 

it is postulated that by applying sufficient energy, portions of aether can be pair-produced to form 

free sources of detached-aether. Hence, four types of aether are postulated to exist: positive-

attached-aether, negative-attached-aether, positive-detached-aether and negative-detached-aether. 

In addition to the aether, other foreign substances are assumed to exist. Extrinsic-energy and 

extrinsic-mass are defined here as the energy and mass, respectively, of any foreign substance 

immersed into the aether. 

In the assumed physical model, we see that the aetherial substances are assumed to be similar to 

other substances we are familiar with. Normal solids are homogeneous, isotropic, and continuous, 

and their electron shells and nuclei reveal a two-component nature. However, development of the 

aether model will also require several additional assumed aetherial attributes that will now be 

specified. 
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A.4.3. The Postulates. 

The following postulates are proposed: 

The Flow Postulate. When aether of one type flows relative to aether of another type, a flow force 

is generated that is proportional to the flow, and the force is aligned with the flow. 

The Tension Postulate. In the absence of external effects, the tension within a quantum of 

attached-aether is proportional to the separation of any two parallel faces of its surrounding 

volume.  

The Density Postulate. In any volume, the density of the positive-aether equals the density of the 

negative-aether minus an amount proportional to the extrinsic-energy within the volume. 

A.4.4. The Small Disturbance Assumption. For this work we will make the assumption that the 

nominal density of the attached-aether is much greater than the density changes that result from 

detached-aether or extrinsic-energy. 

 

A.5 – The Aetherial Laws and Assignments 

Section A.4 lays out our starting hypothesis, which consists of some assumptions and postulates 

we will use as a starting point for our further derivations. In addition to this foundation, 

development of this work led to the discovery of several additional aetherial attributes, which we 

classify as either laws or assignments. We will see that there are laws for work due to displacement, 

flows laws, a law for the effect that extrinsic-energy has on the aether, and assignments for 

gravitational-mass and inertial-mass. Each of these laws and assignments will be introduced as it 

is needed. 
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Part B. Setting up the Analysis. 

We assume that the physical quantum is made up of a continuous field and that we can analyze an 

arbitrarily small subsection of that field. In this Part B we will set up our study of the aether by 

introducing the quantum-cube, the analysis-cube, and displacement vectors for those cubes. We 

will also derive some fundamental properties of the quantum and analysis-cubes. 

 
B.1. Displacement Vectors. Defining P, N, PG and NG 

We assume that in the absence of disturbances a two-component, attached-aether exists throughout 

all of space that is homogeneous and isotropic. In this rest condition it is possible to divide the 

attached-aether into small volume elements (cubes) and label each cube with the coordinates of its 

center, (x, y, z). The displacement and motion of the attached-aether can then be analyzed by 

looking at deviations from this nominal condition at each point over time. Both the negative-

attached-aether and the positive-attached-aether can move independently. Here, the vector P 

(which is a function of x, y, z and t) is defined to be the displacement of a positive-attached-aether 

cube relative to its nominal position. The magnitude of P is the distance that the positive-attached-

aether has moved away from its nominal position, while the direction of P is the direction it has 

moved away from its nominal position. For the negative-attached-aether, similar considerations 

apply, and the vector N is defined to be the displacement of a negative-attached-aether cube 

relative to its nominal position.  

It will be seen below that there are two independent sources for aetherial motion. Those sources 

are detached-aether and extrinsic-energy (such as mass). For motion caused by detached-aether 

the vectors P and N are used (with no additional subscript). For motion caused by extrinsic-energy, 

the vectors PG and NG are used. 



 

11 
 

B.2. Mathematical Expression of the Density and Tension Postulates 

We define PA as the positive-attached-aether density, PD as the positive-detached-aether density, 

NA as the negative-attached-aether density and ND as the negative-detached-aether density. With 

these definitions, in the absence of extrinsic-energy, the equality of the positive and negative aether 

density specified by the density postulate can be expressed as: 

P = PA + PD = NA + ND = N (1) 

We consider the effects of extrinsic-energy, predominantly mass, in section D.  

Consider next a cube containing one quantum of aether (an aetherial-quantum-cube) with each 

dimension of the cube equal to Q. With no external work having been done on the cube, and with 

FT the magnitude of the force at the cube-face due to tension and KT0 the nominal-tension-

parameter for the quantum-cube, the tension postulate can be expressed mathematically as 

FT = KT0Q (2) 

 

B.3. Forces, Energy and Density of the Aetherial-Quantum-Cube 

Eq. (2) is the magnitude of the inward force on a cube-face due to tension. To find the tension-

energy stored in the cube, we form the work, ∫ F . dx, that it takes to expand the cube-faces from 

x = 0 (where the force is zero) to x = (+/–)Q/2. To evaluate the work done to move the right-side-

face to +Q/2 notice that the force will grow as 2KT0x during the expansion. This is because the 

tension is determined by the total stretching of the cube, which is twice the amount that each face 

is displaced from 0. (As we expand the right face from x = 0 to x =Q/2, the left face expands from 

x = 0 to x =–Q/2 and the faces are always separated by 2x.) The work done on the right-side-face 

is thus ∫ 2KT0xdx = KT0(Q/2)2 = (1/4)KT0Q
2, where we have integrated from 0 to Q/2. Both 
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the force to expand against the tension and the displacement of the right-side cube wall are in the 

positive x direction and hence the work is positive leading to an increase in stored energy. For the 

left-side-face the force and displacement are both in the negative direction, and it will contribute 

an equal amount to the stored energy, leaving the total stored tension-energy in one dimension of 

a single aetherial-quantum-cube as: 

ET = (1/2)KT0Q
2 (3) 

Within the solid aether each aetherial-quantum-cube is surrounded by other aetherial-quantum-

cubes. With the hypothesis of a fermionic aether, no two quanta will be able to occupy the same 

state, and the neighboring cubes will be modeled here as forming a three-dimensional square well 

surrounding the aetherial-quantum-cube of interest. Within a three-dimensional square well, the 

quantum-momentum p is determined by the De Broglie relationship, p = hk where h is Planck’s 

constant h divided by 2, k = |k| = 2/ is the wave number, and  is the wavelength. In the ground 

state the wavelength will be twice the width of the well, or,  = 2Q, leaving p = |p| = h/Q for 

each dimension. The quantum-energy is EQ = p2/2m = (px
2 + py

2 + pz
2)/2m = 3h22/2mQ

2 where 

m is the mass of the quantum. In the symmetric situation that pertains prior to any disturbance, 

each dimension is the same as the others, and we can simplify our analysis to one dimension 

leaving 

EQ = KQ0/Q
2 (4) 

In Eq. (4), for one dimension, KQ0 = h22/2m. KQ0 is the nominal quantum-force-parameter for 

the quantum-cube. Differentiating EQ with respect to Q leaves the expression for the magnitude 

of the quantum-force FQ acting on two opposing faces of the cube that arises from the quantum-

pressure: 

FQ = dEQ/dXQ = 2KQ0/Q
3 (5) 
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Positive signs are employed in Eqs. (2) through (5) because they involve magnitudes of the various 

quantities. Since FT arises from a tension, FT is directed inward. Since FQ arises from a pressure, 

FQ is directed outward. The physical picture is that of an elastic-entity being both pushed outward 

by its own quantum-pressure and simultaneously pulled inward by its own internal tension. 

It is of some interest to consider Eq. (5) to be fundamental rather than Eq. (4) and to then determine 

the quantum-energy of the aetherial-quantum-cube. To do so, we evaluate the work done against 

the quantum-force as the aetherial-quantum-cube is compressed inward from infinity, since in this 

case the force of Eq. (5) is zero at infinity. For the right-side-face of a very long aetherial-quantum-

box we integrate the force –2KQ0/(2x)3 = –KQ0/4x3 from x = ∞ to x = Q/2. We use 2x in the force 

because the distance from zero to the position of the right-face (x) is half of the full length of the 

aetherial-quantum-cube. Performing the integration as we compress the right-face results in 

KQ0/8x2 which we need to evaluate from ∞ to Q/2, or E = KQ0/8(Q/2)2 = KQ0/2Q
2. And since 

work against the left-face contributes the same amount of energy, the total quantum-energy is EQ 

= KQ0/Q
2, Eq. (4). To compress the box to a length of Q we must push inward, in the opposite 

direction of dx, which is why the integrand (–KQ0/4x3) has a minus sign. (As discussed above, 

here we are focusing on just a single dimension. Had we instead used a very large aetherial-

quantum-cube in three dimensions and compressed all six sides we would have ended up with 

three times the energy, which would have been absorbed into our definition of the constant KQ0. 

See the discussion surrounding Eq. (4).) 

The total energy of one dimension of our aetherial-quantum-cube is the sum E = ET + EQ = 

(1/2)KT0Q
2 + KQ0/Q

2, the extremum of which can be found by setting  

(dE/dQ)0 = KT0Q – 2KQ0/Q
3 = 0 (6) 
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From Eq. (6) we see that KT0Q = 2KQ0/Q
3 at the extremum. Defining 0 as the value obtained 

at the extremum, 0
4 = 2KQ0/KT0, or, 

0 = (2KQ0/KT0)1/4  (7) 

To see whether the extremum is a minimum or a maximum, the second derivative is evaluated:  

(d2E/dQ
2)0 = (KT0 + 6KQ0/Q

4)0 = KT0 + 6KQ0/(2KQ0/KT0) = 4KT0 (8) 

Eq. (8) is positive, indicating an energy minimum. To achieve this energy minimum the aetherial-

quantum-cube will have the length given by Eq. (7) for each dimension. Hence, with Q the amount 

of an aether-quantum (which we will see has units of charge) the attached-aether density 0 in the 

absence of any disturbances is a constant: 

0 = Q/0
3 = Q/(2KQ0/KT0)3/4 = Q(KT0/2KQ0)3/4 (9) 

It is the equilibrium between the inward force due to tension and the outward force due to quantum-

pressure that leads to Eq. (9). However, the tension and pressure are continuous and bi-directional 

which could lead to some confusion. Consider two cubes, a left-cube and a right-cube, that share 

a common face. FT on the left face of the right-cube is inward, which is to the right. But FT on 

the left-cube is also inward for it, which is now to the left. The net force due to tension on that face 

is therefore zero, which might cause doubt about the derivation of Eq. (9). However, the quantum-

pressure within the left-cube is directed toward the right, and it exactly balances and offsets the 

tension-force exerted by the left-cube. Therefore, the net force from neighboring cubes is zero, and 

the derivation of Eq. (9) need not include effects from neighboring cubes in the case treated in this 

section, where no external work has been done on the aether-quantum. 

B.4. Forces, Energy and Density of the Sub-Quantum Analysis-Cube 

When analyzing finite-sized objects, such as the aetherial-quantum-cubes, artifacts related to the 

finite size may arise. It is desirable for our purposes to eliminate those artifacts from our analysis. 
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Toward that aim we will now introduce the analysis-cube. The analysis-cube is a cube with each 

dimension having a nominal size  

XQ = Q/n (10) 

In Eq. (10) n is some value greater than one. By letting n tend toward infinity, we can analyze the 

aether in the continuum limit, achieving exact expressions for the values of fields. (See section A.3 

above for our assumption on the validity of this approach.) The quantum effects manifest in the 

individual quantum; we will now investigate how those manifestations relate to the sub-quantum. 

As a first observation, we see that the volume of the analysis-cubes is 1/n3 times that of the 

aetherial-quantum-cubes. Hence, for homogenous and isotropic cubes, we arrive at the following 

energy relations: 

ET0 = ET/n3 = (1/2)KT0Q
2/n3 = (1/2)KT0XQ

2 (11) 

EQ0 = EQ/n3 = KQ0/Q
2n3 = KQ0/XQ

2  (12) 

In the above, ET0 is the tension-energy and EQ0 is the quantum-energy of the analysis-cube, KT0 is 

the tension-parameter and KQ0 is the quantum-force-parameter where all quantities without the 

subscript  refer to the analysis-cube entities. All quantities are for the case of an undisturbed 

aether. With Eq. (10), XQ = Q/n, we find that (1/2)KT0Q
2/n3 = (1/2)KT0XQ

2 = (1/2)KT0(Q/n)2 

and KQ0/Q
2n3 = KQ0/XQ

2 = KQ0/(Q/n)2, which leads us to 

KT0 = KT0/n (13) 

KQ0 = KQ0/n5  (14) 

We can now form the force relations by taking the appropriate derivatives of Eqs. (11) and (12): 

FT0 = |dET/dXQ| = KT0XQ (15) 

FQ0 = |dEQ/dXQ| = 2KQ0/XQ
3 (16) 
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FT0 is the total tension-force and FQ0 is the total quantum-force present on the faces of the analysis-

cube in the undisturbed aether. Using Eq. (2), FT = KT0Q, along with Eqs. (10), (13) and (15) we 

see that FT0 = KT0XQ = (KT0/n)(Q/n) = FT/n2. Now both FT0 and FT are the total force on the 

cube-face. Forming the force per unit area we find  

FT0/XQ
2 = (FT/n2)/(Q/n)2 = FT/Q

2 (17) 

Eq. (17) informs that the force per unit area due to the tension remains the same independent of 

the size of our analysis-cube, as it must. Using Eq. (5), FQ = 2KQ0/Q
3, along with Eqs. (10), (14) 

and (16) we see that FQ0 = 2KQ0/XQ
3 = (2KQ0/n5)/(Q/n)3 = FQ/n2. With FQ0 and FQ the total force 

on the cube-face we form the forces per unit area to find  

FQ0/XQ
2 = (FQ/n2)/(Q/n)2 = FQ/Q

2 (18) 

Eq. (18) relates that the force per unit area due to the quantum-pressure remains the same 

independent of the size of our analysis-cube, as it must. 

The total energy of one dimension of the analysis-cube is the sum E = ET0 + EQ0 = (1/2)KT0XQ
2 + 

KQ0/XQ
2, the extremum of which can be found by setting  

(dE/dXQ)0 = KT0XQ – 2KQ0/XQ
3 = 0 (19) 

From Eq. (19) we see that KT0XQ = 2KQ0/XQ
3 at the extremum. Defining X0 as the value obtained 

at the extremum we have the following useful relations 

X0
4 = 2KQ0/KT0 (20) 

KT0X0 = 2KQ0/X0
3 (21) 

KT0X0
2 = 2KQ0/X0

2 (22) 

X0 = (2KQ0/KT0)1/4  (23) 

To see whether the extremum is a minimum or a maximum, the second derivative is evaluated:  

(d2E/dXQ
2)0 = (KT0 + 6KQ0/XQ

4)0 = KT0 + 6KQ0/(2KQ0/KT0) = 4KT0 (24) 
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Eq. (24) is positive, indicating an energy minimum. To achieve this energy minimum the analysis-

cube will have the length given by Eq. (23) for each dimension. And now, with QA = Q/n3 the 

amount of aether in the analysis-cube, and using Eqs. (7), (13), (14) and (23) the attached-aether 

density is to seen to remain at the value 0 given in Eq. (9) when there are no aetherial disturbances: 

0 = QA/X0
3 = QA/(2KQ0/KT0)3/4 = (Q/n3)/[2(KQ0/n5)/(KT0/n)]3/4  

= Q(KT0/2KQ0)3/4 = Q/0
3 (25) 

B.5. Energy and Work Equations of the Arbitrary Analysis-Cube 

When disturbances of detached-aether or extrinsic-energy enter a region of attached-aether, those 

disturbances will be seen below to compress or expand the attached-aether. In addition to 

expansion or compression, portions of the attached-aether will displace. The displacement occurs 

because expansion or compression of the attached-aether in some regions will result in a 

displacement of the attached-aether in other regions, as the regions push or pull on each other. The 

displacement will be shown to alter the force and energy equations. 

We see above from Eqs. (11) and (15) that the tension-energy is ET0 = (1/2)KT0XQ
2 and that the 

tension-force on the walls is FT0 = KT0XQ. These expressions resulted from the special case of an 

undisturbed aether wherein the force parameter KT0 is a constant. However, we will see below that 

the force parameter may not remain constant, leading to the following expressions for the arbitrary 

case: 

FT = KTXQ (26) 

ET = (1/2)KTXQ
2 (27) 

ET is the energy it takes to expand the analysis-cube from 0 to XQ. We have used KT rather than 

KT0 in Eqs. (26) and (27) because it will be seen later that KT can vary from its undisturbed-aether 

value. 
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Similarly Eqs. (12) and (16) relate that the quantum-energy is EQ0 = KQ0/XQ
2 and that the quantum-

force on the walls is FQ0 = 2KQ0/XQ
3. Each of those equations are for the case of the undisturbed 

aether, and the quantum-force parameter KQ0 is considered a constant. In general, the quantum-

force parameter will not be a constant leaving us with 

FQ = 2KQ/XQ
3 (28) 

EQ = KQ/XQ
2 (29) 

EQ is the energy it takes to compress the analysis-cube from infinity to XQ. We have used KQ rather 

than KQ0 in Eqs. (28) and (29) because it will be seen later that KQ can vary from its undisturbed-

aether value. Notice that Eqs. (26) and (28) are for the force magnitude, and there is no direction 

nor sign. 

When portions of attached-aether are displaced, work will be done. The tension and pressure fields 

may do work on the attached-aether, or, the attached-aether may do work on the tension and 

pressure fields. The work equation will of course be given by the integral of the force over the 

distance travelled, W = ∫ F dx. 

For the displacement work we will treat the quantum-cube before treating the analysis-cube. On 

the face of a quantum-cube, the tension-force is given by Eq. (2), FT = KT0Q; FT is the tension 

force per unit area multiplied by the area of the cube face. Similarly, the quantum-force of Eq. (5), 

FQ = 2KQ0/Q
3, is the quantum-pressure multiplied by the area of the cube face. As we displace, 

expand or compress an attached-aether quantum-cube within the tension and pressure fields, we 

propose: 

The Aetherial Displacement-Work Law. When attached-aether is displaced, work is done on the 

aether by the tension and quantum-force fields that is proportional to the force, proportional to the 

distance of displacement, and proportional to the amount of aether displaced. 
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The aetherial displacement-work law is expressed mathematically for the aetherial-quantum as: 

WTD = Kc ∫ FT dx  (30) 

WQD = Kc ∫ FQ dx  (31) 

In Eqs. (30) and (31) Kc is a coupling constant specific to the amount of aether in an aetherial-

quantum. For the value Kc = 1 we have already used these equations for the expansion of the 

quantum-cube against the tension and for the compression of the quantum-cube against the 

quantum-pressure. But here we observe that the work done by displacing the quantum-cube 

through the tension and quantum-pressure fields may be some fraction of the work done on a cube 

face due to expansion and/or contraction, as the work done by stretching (or compressing) the cube 

may not be the same as the work done by displacing the entire cube through the fields. (In both 

cases, expansion/contraction and displacement, the work will be the force multiplied by the 

distance, but the force against displacement includes an additional coupling coefficient, Kc.) 

For the displacement-work equations we notice that the aetherial displacement-work law states the 

work will also scale as the amount of aether moving through the fields. For aether at the nominal 

density, this leads to scaling Eqs. (30) and (31) by a factor (X0/0)3, which is the analysis-cube 

volume divided by the quantum-cube volume. Thus, the displacement-work equation for the 

tension work on the analysis-cube is WTD=(X0/0)3WTD=(X0/0)3Kc ∫FT dx=(X0/0)3Kc ∫KT0 dx 

= (X0/0)2Kc ∫ KT0 dx or 

WTD = (X0/0)Kc ∫ KTX0 dx  (32) 

To arrive at Eq. (32) use is made of Eq. (2), FT = KT0Q, Eq. (10), XQ = Q/n, Eq. (13) KT0 = 

KT0/n, KT ≈ KT0 and XQ ≈ X0, so we have (X0/0) = (1/n) and KT0 = nKT0, so (X0/0)KT = KT0. 

Later we will see that KT can vary, so we replace KT0 with KT in Eq. (32).  
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The displacement-work equation for the quantum-pressure work is WQD = (X0/0)3WQD = 

(X0/0)3Kc ∫ FQ dx = (X0/0)3Kc ∫ 2KQ0/0
3
 dx = (X0/0)6Kc ∫ 2KQ0/X0

3
 dx, 

WQD = (X0/0)Kc ∫ 2KQ/X0
3

 dx  (33) 

To arrive at Eq. (33) use is made of Eq. (5), FQ = 2KQ0/Q
3, Eq. (10), XQ = Q/n, Eq. (14) KQ0 = 

KQ0/n5, and XQ ≈ X0, as we have (X0/0) = (1/n) and KQ0 = n5KQ0, so (X0/0)5KQ0 = KQ0. Later 

we will see that KQ can vary, so we replace KQ0 with KQ in Eq. (33). 

Note that Eqs. (32) and (33) are both the magnitude of the work done. In what follows we will see 

that the displacement work can be either positive or negative, depending on the physics of the 

particular situation. We will include the appropriate sign as needed. 

 
B.6. Arbitrary Analysis-Cubes and Analysis-Spheres and the More 

General Case. 

In what follows we will often do an analysis of a constant-density individual cube or sphere. By 

letting our cubes or spheres tend toward zero size (and in the case of spheres, using different sized 

spheres all tending toward zero size) we assume that we can fill any arbitrary volume with any 

arbitrary density to any arbitrary accuracy. (Each such cube or sphere will have its own constant 

density, which may be different than that of other cubes or spheres.) By further assuming a 

principle of superposition of fields, the treatment of the constant-density individual cube or sphere 

is sufficient for the more general case. 
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Part C. Electromagnetism 

In this section the aether will be analyzed in the absence of gravitational effects. Gravitation will 

be analyzed in section D below. 

 

C.1. The Electromagnetic Aetherial Density Law 

Consider adding a small amount of positive-detached-aether into an analysis-cube. (This is the 

case when one quantum of detached-aether occupies a volume of many attached aetherial-

quantum-cubes.) In this case, Eq. (1) becomes PA + PD = NA, which can be met by PA and NA 

becoming different from their nominal value of 0: 

PA = 0 – fPD  (34) 

NA = 0 + (1 – f)PD (35) 

In Eqs. (34) and (35) f is some arbitrary fraction, with 0 < f < 1. To achieve the decrease in PA, 

the volume occupied by the positive-attached-aether must be expanded. (Since the amount of 

attached-aether is the same within the analysis-cube, the density can only be decreased if the 

analysis-cube occupies a larger volume.) And to increase NA, the negative-attached-aether must 

be compressed. Prior to expansion or compression each analysis-cube contains Q0 = 0X0
3 of 

attached-aether. For the positive case, after expansion Q0 occupies a larger volume V at the lower 

density PA: Q0 = PAV. Hence, V = Q0/PA = 0X0
3/PA = 0X0

3/(0 – fPD) = X0
3/(1 – fPD/0). 

Assuming PD << 0, V = (1 + fPD/0)X0
3, and due to symmetry in the expansion, each dimension 

of the positive analysis-cube increases to (1 + fPD/0)1/3X0 ≈ (1 + fPD/30)X0. (Here, and 

throughout this work, we make use of the binomial theorem.) With C1 = PDX0/30, the change in 

each dimension is 

XPA = fPDX0/30 = fC1 (36) 
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For the negative-attached-aether, achieving NA = 0 + (1 – f)PD requires that the negative- 

analysis-cube be compressed. The volume will become V = Q0/NA = 0X0
3/NA = 0X0

3/[0  + 

(1–f)PD] = X0
3/[1 + (1–f)PD/0] ≈ [1 – (1–f)PD/0]X0

3 and each dimension of the negative 

analysis-cube decreases to [1 – (1–f)PD/0]1/3X0 ≈ [1 – (1–f)PD/30]X0. The change in each 

dimension is 

XNA = –(1–f)PDX0/30 = –(1–f)C1  (37) 

Eq. (23) relates that both the positive and negative analysis-cubes have an equilibrium value of X0 

= (2KQ0/KT0)1/4 before any expansion or compression, and Eqs. (19) and (24) relate that dE/dX is 

zero and d2E/dX2 = 4KT0 at X = X0. This leads to an expression for the energy within both the 

positive and negative analysis-cubes for small changes XA near X0 of 

E = E0 + 2KT0(XA)2 (38) 

Eq. (38) arises since the first term in the Taylor expansion of E is zero near E0 and the second term 

is 2KT0(XA)2. By taking the first and second derivatives of Eq. (38) with respect to XA and 

evaluating at XA = 0, we arrive at Eqs. (19) and (24), verifying our choice of the constant 2KT0. 

After immersion of detached-positive-aether the total energy change of the positive analysis-cube 

is EP = 2KT0(XPA)2 = 2KT0f2C1
2, while for the negative cube EN = 2KT0(XNA)2 = 2KT0(1–

f)2C1
2. The total change in energy in the region occupying these cubes is E = EP + EN = 

2KT0C1
2[f2 + (1–f)2] = 2KT0C1

2[2f2 + 1 – 2f]. Differentiating E with respect to f yields d(E)/df 

= 2KT0C1
2[4f – 2], which has an extremum at f = 1/2, and taking the second derivative d2(E)/df2 

= 8KT0C1
2, shows that this extremum is a minimum. Therefore f = 1/2 will manifest itself in nature. 

With f = 1/2 Eqs. (34) and (35) become: 

PA = 0 – PD/2  (39) 

NA = 0 + PD/2 (40) 
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Applying the same analysis to a region immersed in negative-detached-aether and combining the 

two cases leads to the more general expressions: 

PA = 0 – PD/2 + ND/2 (41) 

NA = 0 – ND/2 + PD/2 (42) 

Stated in words: 

The Electromagnetic Aetherial Density Law. When no detached-aether and no extrinsic-mass is 

present in a volume, the attached-aether densities are each equal to a constant value 0. When a 

small amount of detached-aether is present and no extrinsic-energy is present, the density of the 

attached-aether of like (unlike) kind is reduced (increased) by one half the density of the detached-

aether present. 

The derivation of f = 1/2 has made use of the expressions dE/dXQ = 0 and d2E/dXQ
2 > 0, and these 

expressions were derived above assuming no external work has been done on the cube of analysis. 

However, the derivation will still hold in the case where external work has been applied. Eqs. (72) 

and (77) below show that the only change is that E0 of Eq. (38) will also include a term related to 

the cube displacement to lowest order in small quantities. 

Note also that the total aether-density is the sum the attached and detached parts: 

P = PA + PD = 0 + PD/2 + ND/2  (43) 

N = NA + ND = 0 + PD/2 + ND/2 (44) 

We see that the presence of a small amount of detached-aether, whether negative or positive, 

increases the total density of each kind of aether equally. 
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C.2 – Electrodynamic Density Variations in the Attached-Aether due to 

Detached-Aether. Poisson’s Equation. 

 

Figure 1. Analysis-cube of undistorted aether (left). Analysis-cube of expanded attached-aether 

showing original cube within (right). 

Figure 1 shows two aetherial-analysis-cubes. On the left is an undistorted cube of positive-

attached-aether, which is Δx wide by Δy high by Δz deep. (Δx = Δy = Δz = X0.) In the undistorted 

state, the density of the positive-attached-aether, PA, is equal to the nominal density, 0. The 

density of anything is the amount of it divided by the volume it occupies. Hence, on the cube on 

the left, the amount of positive-attached-aether within the volume is 0ΔxΔyΔz. 

If an amount of positive-detached-aether is added to the cube on the left, the size of the volume 

required to contain it will increase. (Eq. (39) informs that the density of the positive-attached-

aether will decrease by half the density of the injected positive-detached-aether. That density 

decrease requires an increase in volume of the positive-attached-aether.) The required expanded 

volume is shown on the right side of Fig. 1. In that second cube, the width is increased by an 

amount δx, while the height and depth are increased by δy and δz respectively. The amount of 
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positive-attached-aether remains 0(xyz), but with the larger volume the positive-attached-

aether density is now: 

PA = 0(xyz)/[(x + x)(y + y)(z + z)]  

≈ 0(xyz)/(xyz + xyz + yxz + zxy) 

= 0/(1 + x/x + y/y + z/z) ≈ 0(1 – x/x – y/y – z/z) (45) 

It is assumed that the nominal density of the positive-attached-aether is far greater than the density 

of the positive-detached-aether, and so the  quantities are very much smaller than the  quantities 

in Eq. (45). This allows the approximations made in Eq. (45).  

To further refine Eq. (45), recall that the vector P is the displacement of the positive-attached-

aether with respect to its equilibrium position. Hence, the x component of P at x is the displacement 

of the center of the cube shown in Fig. 1, and the x component of P at x+Δx/2 is the displacement 

of the right yz face of that cube. Therefore x/2 = Px(x + x/2, y, z, t) – Px(x, y, z, t). Dividing each 

side by x/2 leaves x/x = [Px(x + x/2, y, z, t) – Px(x, y, z, t)]/x/2 = ∂Px/∂x, where the last 

equality is in the limit when we shrink our analysis-cube to zero size. Repeating the derivation for 

y and z will lead to similar expressions. Hence, Eq. (45) can be re-expressed as PA = 0(1 – x/x 

– y/y – z/z) = 0(1 – ∂Px/∂x – ∂Py/∂y – ∂Pz/∂z), or, 

PA = 0(1 – ∇ . P) (46) 

In Eq. (46) and throughout this work, ∇ has its usual definition, ∇ = i∂/∂x + j∂/∂y + k∂/∂z. 

Eq. (46) can be manipulated by bringing 0∇ . P to the left-hand side, bringing –PA to the right-

hand side and dividing through by 0 to get ∇ . P = (0 – PA)/0. Then utilizing Eq. (41) from 

above: 
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∇ . P = (0 – PA)/0 = (PD – ND)/20 (47) 

(While Figure 1 shows the situation where the cube expands due to the presence of some detached-

positive-aether, the cube could instead compress by the presence of some negative-detached-

aether. The derivation immersing ND is similar to that for PD. Eq. (47) includes both effects.) 

We can decompose P into its longitudinal (PL) and transverse (PT) components, where PL is 

defined as having zero curl (∇ x PL = 0) and PT is defined as having zero divergence (∇ . PT = 0). 

(This is the Helmholtz decomposition.) Since the longitudinal component of the vector field has 

zero curl it can be expressed as the gradient operator applied to a scalar field: 

PL = ∇P (48) 

ΨP is just a function that has a single scalar value at every point in space and time. 

Since the divergence of the transverse component of P is zero, the divergence of P is equal to the 

divergence of its longitudinal portion alone, ∇ . P = ∇ . PL. And now, with PL = ∇P: 

∇ . P = ∇ . PL = ∇ . ∇P = ∇2P (49) 

Next, combine Eqs. (47) and (49) to yield: 

∇2P = ∇ . PL = ∇ . P = (PD – ND)/20 (50) 

A similar derivation (replace P by N) can be applied to the negative-aether to arrive at: 

NL = ∇N (51) 

and 

∇2N = ∇ . NL = ∇ . N = (ND – PD)/20 (52) 

Subtract Eq. (51) from Eq. (48): 

PL – NL = ∇P – ∇N (53) 
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Subtract Eq. (52) from Eq. (50): 

∇2(P – N) = (PD – ND)/0 (54) 

Now define  by  = –(P – N)0/0, where 0 is the permittivity of free space and define D = 

(PD – ND). We have (P – N) = –0/0 and hence ∇2(P – N) = –0∇2/0 = (PD – ND)/0 = 

D/0. Hence we see that Eq. (54) is Poisson’s Equation: 

∇2 = –D/0 (55) 

With this definition for  we can also rewrite Eq. (53) as: 

PL – NL = ∇(P – N) = –0∇/0 (56) 

Dimensional analysis. Both D and 0 refer to aetherial densities. Eq. (55) informs us that aetherial 

density is a charge density, and so the dimensions of D and 0 are C/m3 = A s m-3. From Eq. (56) 

0∇/0 is a length. 0 has dimensions m-3 kg-1 s4 A2. ∇ has dimensions m-1. Hence, from Eq. (55) 

 has dimensions of m2(A s m-3)/(m-3 kg-1 s4 A2) = m2 A-1 s-3 kg = kg m2 C-1 s-2 = J/C or Volts.  

It is useful to observe that by comparing Eqs. (50) and (52): 

∇ . NL = –∇ . PL (57) 

Eq. (57) shows that the divergence of NL is equal to the negative of the divergence of PL. At this 

point it is relevant to recall the physics of the situation. Referring back to Fig. 1 and the analysis 

that is used to derive the equations above, we see that the presence of a density of positive-

detached-aether within a cube of positive-attached-aether pushes the boundary of the cube 

outward. Since the situation is symmetric, the effect is the same in each dimension. That same 

density of positive-detached-aether within a cube of negative-attached-aether pulls the boundary 

of the negative-attached-aether cube inward. The opposite effect is achieved by the presence of 

negative-detached-aether within the cubes of attached-aether. In each case, the presence of 
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detached-aether leads to displacement of the negative-attached-aether that is always equal and 

opposite to the displacement of the positive-attached-aether. Since injection of detached-aether is 

the only physical cause for the longitudinal displacements PL and NL of the attached-aether, we 

arrive at: 

NL = –PL (58) 

We see that the presence of detached-aether forces a purely longitudinal separation between the 

aetherial components, and that the separation is achieved with the negative-attached-aether 

displacement equal and opposite to the positive-attached-aether displacement. 

 

C.3 – The Detached-Aether-Immersion Force (The Delta-Force) 

C.3.1. Aetherial Forces in an Isolated Analysis-Cube. Recalling Eqs. (15) and (16), FT0 = KT0XQ 

and FQ0 = 2KQ0/XQ
3, respectively, we see that an increase in the size of the analysis-cube from X0 

to XQ = X0+XP increases the inward tension-force FT on the sides of the cube and simultaneously 

decreases the outward quantum-force FQ on the sides of the cube. Were these forces not otherwise 

compensated for, the cube would return to its original size, X0. To maintain the larger size XQ the 

presence in the cube of positive-detached-aether must therefore result in a detached-aether-

immersion force F (the delta-force) that acts on the walls of the positive-attached-aether analysis-

cube that is equal and opposite to the sum of the longitudinal-tension-force and the quantum-

pressure force,  

F = –FTL – FQ.  (59) 
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C.3.2. A Spherical Attached-Aether Region Containing Like-Kind Detached-Aether. 

Consider now the injection of a sphere of positive-detached-aether into the positive-attached-

aether. In this case, with ND = 0, Eq. (50) yields ∇ . P = PD/20, which has the solutions  

PIN = (PD/60)(xi + yj +zk) = (PD/60)r (r < R0) (60) 

POUT = P0R0
2r̂/r2 (r > R0) (61) 

In Eqs. (60) and (61) R0 is the radius of the sphere and P0 = (PD/60)R0 is the magnitude of P at 

R0. Verifying Eqs. (60) and (61) are solutions to Eq. (50): ∇ . PIN = (1/r2)∂(r2[(PD/60)r])/∂r = 

(1/r2)∂(r3PD/60)/∂r = PD/20 and ∇ . POUT = (1/r2)∂(r2[P0R0/r2])/∂r = (1/r2)∂P0R0/∂r = 0.  

Notice that immersion of detached-aether into like-kind attached-aether will lead to an outward 

expansion of the like-kind attached-aether. Since tension is a force directed inward, the radially-

outward motion of the attached-aether will do work against the tension. And since the quantum-

pressure force is directed outward, the radially-outward motion of the attached-aether will do 

negative work against the quantum-pressure field. 

C.3.3. Expansion (and Compression) Work Expressions in the Case of Uniform Spherical 

Sources. We will now consider expansion and compression work done on analysis-cubes for the 

case of a uniform spherical source. Slow injection of a uniform source into a spherical region will 

result in the expansion (or compression) of each analytical cube within that spherical region. 

Analysis-cubes a distance r from the center of the sphere will be displaced as well as expanded (or 

compressed). If there are n–2 analysis-cubes between cube-P and the central cube, and if each cube 

expands in size by X, then the center of cube-P will displace by (n–1)X, as it will move by X/2 

due to its own expansion, X/2 due to the center-cube expansion, and X due to the expansion of 

each of the n–2 analysis-cubes lying between cube-P and the center-cube. Once the source is 
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completely injected, cube-P will move a distance P, and it, along with all other cubes inside the 

sphere, will expand (or compress) by an amount X. During the injection we will use the variable 

x to define how far cube-P displaces due to the partially-injected source, and we will use the 

variable w to define how much cube-P expands or compresses due to the partially-injected source. 

When the cubes do not expand at all w = 0 and x = 0, and when they are fully expanded w = X 

and x = P, and since the movements will be linearly related (they are each proportional to the 

amount of source injected) we obtain 

x = (P/X)w (62) 

The tension-force on a wall of an analytical cube is given by Eq. (26), FT = KTXQ. The work done 

against the tension to compress or expand a cube by X (in one dimension) is given by WTC = 2 ∫ 

KTXQ dw, where the integral is evaluated from w = 0 to w = X/2 since each wall moves a distance 

X/2 and the 2 in front of the integral is because there are two walls. We also observe that XQ = 

X0 + w. This leaves the equation for the compression (or expansion) energy as WTC = 2 ∫ KT(X0+w) 

dw. In what follows below we will use 

WTC = 2 ∫ FT dw = 2 ∫ KTX0 dw w is evaluated from 0 to X/2 (63) 

In Eq. (63) we have dropped w from the KT(X0+w) in the integrand. This is done because during 

integration 0 < w < X/2, and hence the w in the integrand will contribute to the result via a higher 

order of X/X0, and below we will only keep terms to the lowest non-vanishing order of X/X0. 

In using Eq. (63) the sign chosen for the work will be assigned depending on the physics of each 

situation. 

The quantum-force on a wall of an analytical cube is given by Eq. (28), FQ = 2KQ/XQ
3. The work 

done against the quantum-force to compress or expand a cube by X (in one dimension) is given 



 

31 
 

by WQC = 2 ∫ 2KQ/XQ
3 dw, where the integral is again evaluated from w = 0 to w = X/2, we again 

have a factor of 2 because there are two walls, and again, XQ = X0 + w. This leaves the equation 

for the compression (or expansion) energy as WQC = 2 ∫ 2KQ/(X0+w)3 dw. In what follows below 

we will use 

WQC = 4 ∫ KQ/X0
3 dw w is evaluated from 0 to X/2 (64) 

In Eq. (64) we have again dropped w from the X0+w in the integrand as below we will keep terms 

only to the lowest non-vanishing order of X/X0. In using Eq. (64) the sign chosen for the work 

will be assigned depending on the physics of each situation. 

Notice that Eqs. (63) and (64) are both of the general form 

WC = 2 ∫ F dw w is evaluated from 0 to X/2 (65) 

C.3.4. The Tension-Force and Tension-Energy Inside a Spherical Attached-Aether Region 

Containing Like-Kind Detached-Aether. Eq. (60) informs us that adding like-kind detached-

aether into a spherical region will cause the attached-aether cubes within that region to expand 

equally in each cartesian direction. Focusing first on the tension, Eq. (15) informs us that an 

expansion X of an analysis-cube leads to a tension-force magnitude FTP = KT0(X0+X) = 

KT0X0(1+X/X0) within that analysis-cube. (The subscript P is for Positive-attached-aether.) 

First consider cube-1, the analysis-cube at the center of the sphere. When it is expanded, the 

tension-force on its wall becomes FTP1 = KT0X0(1+X/X0). Cube-1 is not displaced. 

An immediately adjacent analysis-cube (cube-2) will also expand by X but it will additionally be 

displaced. The displacement involves motion against the field, doing work on the field and 

increasing the tension-energy ET. It will be shown below in section C.3.10 that displacement 

effects do not change the size of cube-2. With ET = (1/2)KTXQ
2, and XQ not changing due to 
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displacement effects, we see that ET changes but XQ does not, and hence KT is no longer constant: 

the work done during displacement changes KT. KT is the variable force parameter. KT0, used 

above, is the constant force parameter of an aetherial cube in its nominal (undisturbed) state. 

As we slowly add detached-aether into the spherical region, the work done against the tension-

field by the displacement of any cube is given in Eq. (32), WTD = (X0/0)Kc∫ KTX0 dx. As a first-

order approximation, we use the nominal tension-force of FT = KT0X0 (KT = KT0 to first-order). 

Injection of detached-aether causes the center of cube-2 to move a distance X/2 due to the 

expansion of cube-1 and a distance X/2 due to its own expansion for a total displacement of X. 

Prior to the detached-aether injection, the center of cube-2 is located at X0. Performing the integral 

of Eq. (32) from X0 to X0 + X (the cube center moves from X0 to X0 + X) the work done against 

the tension by the cube-2 displacement is WTD2 = (X0/0)KcKT0X0X.  

Next, consider cube-3, which is adjacent to cube-2 and further away from the center of the 

detached-aether sphere. The work to displace cube-3 against the tension is again given by Eq. (32), 

but this time the displacement is 2X, with X/2 coming from cubes 1 and 3, and X coming from 

cube 2. Integrating Eq. (32) from 2X0 to 2X0 + 2X, the work done on cube-3 during the 

displacement is WTD3 = 2(X0/0)KcKT0X0X.  

And now, consider cube-J, where J is some large integer with the center of cube-J separated from 

the center of the detached-aether-sphere by (J–1)X0. The energy to displace cube-J is again given 

by Eq. (32), but this time the displacement is (J–1)X, with X/2 coming from each of cubes 1 and 

J, and an additional X coming from each of the cubes between cube-1 and cube-J. Integrating Eq. 

(32) from 0 to (J–1)X, the work done against the tension on cube-J from the displacement is WTDJ 

= (J–1)(X0/0)KcKT0X0X to first order. 
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Continuing to set aside the energy change due to expansion so we can focus on the effect of 

displacement, the tension-energy of cube-J is ET = ET0 + WTDJ = (1/2)KT0X0
2 + KcKT0X0

2(J–

1)X/0. (ET0 = (1/2)KT0X0
2.) With ET = (1/2)KTX0

2, we arrive at the expression KT = KT0(1 + 

2Kc(J–1)X/0). The tension-force remains FT = KTX0, but now KT includes the next order 

correction.  

As detached-aether is slowly injected, the center of the Jth cube will move from (J–1)X0 to (J–

1)X0+(J–1)X. The motion will thus cover a distance (J–1)X. At the beginning of the motion 

FTP is of course just KT0X0, and it is at the end that FTP = KTX0 = KT0X0[1 + 2Kc(J–1)X/0]. With 

x now defined as the deviation of the cube center from its nominal center (which varies from 0 to 

(J–1)X during the detached-aether injection) and adding a third subscript P for the effect of 

Positive detached-aether, the full second-order expression for the tension-force in the analysis-

cube is  

FTPP = KTX0 = KT0X0[1 + 2Kcx/0] (66) 

Eq. (66) is seen to be the nominal value of KT0X0 when there is no injected detached-aether (and 

x = 0), and KT0X0[1 + 2Kc(J–1)X/0] when we reach full injection (and x = (J–1)X). The linearity 

follows because X (and hence (J–1)X) is linear with the amount of detached-aether injected. 

With the second-order expression for the tension just derived, we can now calculate the second-

order effect on the cube tension-energy due to displacement. Eq. (32) gives the work done on the 

field by the cube displacement as WTDJ = (X0/0)Kc∫ KTX0 dx = Kc(X0/0)KT0X0 ∫ [1+2Kcx/0] dx 

= Kc(X0/0)KT0X0x + Kc
2(X0/0)2KT0x2 = KcKT0X0(X0/0)(J–1)X + Kc

2KT0(X0/0)2(J–1)2X2. (For 

the displacement, the integral is evaluated between zero and its final displacement (J–1)X.) Now 
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(J–1)X is the distance the cube moves from its nominal position, P = (J–1)X, and hence WTDJ = 

KcKT0X0(X0/0)P + Kc
2KT0(X0/0)2P2. 

The expansion energy is now calculated using Eq. (63), WTC = 2 ∫ KTX0 dw. From Eq. (66), KTX0 

= KT0X0[1 + 2Kcx/0]. We now use Eq. (62), x = (PX)w, and we obtain KTX0 = 

KT0X0[1+2Kc(P/X)w/0]. As specified in Eq. (63) we integrate from w = 0 to w = X/2. Hence 

WTC = 2 ∫ KTX0 dw = 2KT0X0 ∫ [1+2Kc(P/X)w/0] dw = 2KT0X0w + 2KT0X0Kc(P/X)w2/0 = 

KT0X0X + KT0X0KcPX/20. Recall that Eq. (63) is for one dimension only, and that inside the 

sphere the expansion will be the same in all three dimensions. Hence, WTC3 = 3KT0X0X + 

3KT0X0KcPX/20. The total tension-energy of an arbitrary analysis-cube inside the spherical 

region is the undisturbed energy plus the displacement energy plus the expansion energy, ETPPI = 

(1/2)KT0X0
2 + KcKT0X0(X0/0)P + Kc

2KT0(X0/0)2P2 + 3KT0X0X + 3KT0X0KcPX/20, or, ETPPI = 

KT0X0
2[(1/2) + KcP/0 + Kc

2(P/0)2 + 3X/X0 + 3KcPX/2X00]. Here we have derived the force 

for positive P. For negative P (or P at any angle) the work done is still positive, since such a cube 

is still expanding outward against the tension. Hence we will replace P by its absolute value, |P|: 

ETPPI = KT0X0
2[(1/2) + Kc|P|/0 + Kc

2(|P|/0)2 + 3X/X0 + 3Kc|P|X/2X00] (67) 

In Eq. (67) and the above paragraph, the subscript TPPI refers to Tension of the Positive-attached-

aether due to immersed Positive-detached-aether in the region Inside of the sphere. 

C.3.5. The Quantum-Force and Quantum-Energy Inside a Spherical Attached-Aether 

Region Containing Like-Kind Detached-Aether. When slowly adding detached-aether into a 

spherical volume, the expansion of the attached-aether will lead to a decreased quantum-force in 

cube-1. From Eq. (16) we see that the quantum-force magnitude will be FQP1 = 2KQ0/(X0+X)3 

within cube-1 once the detached-aether is fully immersed. An immediately adjacent cube (cube-
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2) will also expand by X but it will additionally be displaced. The displacement will involve 

motion in the direction of the quantum-force, and in this case negative work will be done on the 

field, reducing the quantum-energy EQ. We show in section C.3.10 that displacement alone will 

not change the size of cube-2. With EQ = KQ/XQ
2, and with XQ not changing due to displacement, 

we see that EQ changes but XQ does not, and hence KQ is no longer constant: the energy due to 

displacement changes KQ. KQ is the variable quantum-force parameter; KQ0, used in Eq. (12), is 

the nominal force parameter of an undisturbed aetherial cube. (KQ0 is a constant.) 

As we slowly add detached-aether into a spherical region, the displacement of any cube within that 

region is aided by the quantum-force-field work done, WQD = (X0/0)Kc∫2KQ/X0
3 dx, as given in 

Eq. (33). As a first-order approximation, we use a quantum-force of FQ = FQ0 = 2KQ0/X0
3. Injection 

of detached-aether causes the center of cube-2 to move a distance X/2 due to the expansion of 

cube-1 and a distance X/2 due to its own expansion for a total displacement of X. Prior to the 

detached-aether injection, the center of cube-2 is located at X0. Performing the integral of Eq. (33) 

from X0 to X0 + X (the cube center moves from X0 to X0 + X) the work done during the 

displacement on the quantum-force-field is WQD2 = –(X0/0)[2KcKQ0/X0
3]X. In this case, WQD 

will be negative, since the displacement is in the direction of the quantum-force, and the quantum-

energy is reduced. 

The energy freed as cube-J is displaced is again given by Eq. (33), but this time the displacement 

is (J–1)X. The work done against the quantum-force-field as cube-J is displaced is WDQJ = –

(X0/0)[2(J–1)KcKQ0/X0
3]X to first order. Continuing to set aside the energy change due to 

expansion so we can focus on the effect of displacement, the quantum-energy of cube-J is EQ = 

EQ0 + WQDJ = KQ0/X0
2 – (X0/0)[2(J–1)KcKQ0/X0

3]X = (KQ0/X0
2)(1 – 2Kc(J–1)X/0). With EQ = 
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KQ/X0
2, we arrive at the expression KQ = KQ0(1 – 2Kc(J–1)X/0). The quantum-force remains FQ 

= 2KQ/X0
3, but now KQ includes the next order correction. 

As detached-aether is slowly injected, the center of the Jth cube will move from (J–1)X0 to (J–

1)X0+(J–1)X. The motion will thus cover a distance (J–1)X. At the beginning of the motion 

FQP is of course just 2KQ0/X0
3, and it is at the end that FQP = 2KQ/X0

3 = (2KQ0/X0
3)[1 – 2Kc(J–

1)X/0]. Again defining x as the deviation of the cube center from its nominal center (x varies 

from 0 to (J–1)X during the detached-aether injection) the full expression for the quantum-force 

in the analysis-cube is  

FQPP = (2KQ0/X0
3)[1 – 2Kcx/0] (68) 

With the expression for the second-order quantum-force just derived, we can now include the 

second order effect on the cube quantum-energy. From Eq. (33), the work done on the quantum-

force-field due to the cube displacement is WQDJ = –∫ FQdx = –(KcX0/0)(2KQ0/X0
3) ∫ [1–

2Kcx/0]dx = –(2KcKQ0/X0
20)x + (2Kc

2KQ0/X0
20

2)x2 = –(2KcKQ0/X0
20)(J–1)X + 

(2KQ0Kc
2/X0

20
2)(J–1)2X2. (For the displacement, the integral is evaluated between zero and (J–

1)X.) Now (J–1)X is the distance the cube moves from its nominal position, P = (J–1)X, and 

hence WQDJ = –(2KcKQ0/X0
20)P + (2KQ0Kc

2/X0
20

2)P2. 

The expansion energy is now calculated using Eq. (64), WQC = –4 ∫ KQ/X0
3 dw where we now use 

a negative sign since expansion lowers the quantum-energy of the cube. From Eq. (68), FQPP = 

(2KQ0/X0
3)[1 – 2Kcx/0]. We now use Eq. (62), x = (PX)w, and we obtain 2KQ/X0

3 = 

(2KQ0/X0
3)[1–2Kc(P/X)w/0]. As specified in Eq. (64) we integrate from w = 0 to w = X/2. 

Hence WQC = –4 ∫ KQ/X0
3 dw = –4KQ0/X0

3 ∫ [1–2Kc(P/X)w/0] dw = –(4KQ0/X0
3)w + 

(4KQ0/X0
3)Kc(P/X)w2/0 = –(2KQ0/X0

3)X + (KQ0/X0
3)KcPX/0. Recall that Eq. (64) is for one 



 

37 
 

dimension only, and that inside the sphere the expansion will be the same in all three dimensions. 

Hence, WQC3 = –(6KQ0/X0
3)X + (3KQ0/X0

3)KcPX/0. The total quantum-energy of an arbitrary 

analysis-cube inside the spherical region is the undisturbed energy plus the displacement energy 

plus the expansion energy, EQPPI = KQ0/X0
2 – (2KcKQ0/X0

20)P + (2KQ0Kc
2/X0

20
2)P2 –

(6KQ0/X0
3)X + (3KQ0/X0

3)KcPX/0, or, EQPPI = (2KQ0/X0
2)[(1/2) – KcP/0 + Kc

2P2/0
2 – 3X/X0 

+ 3KcPX/2X00]. Here we have derived the force for positive P. For negative P (or P at any angle) 

the work done is still negative, since such a cube is still expanding outward aided by the quantum-

force. Hence we will replace P by its absolute value, |P|: 

EQPPI = (2KQ0/X0
2)[(1/2) – Kc|P|/0 + Kc

2|P|2/0
2 – 3X/X0 + 3Kc|P|X/2X00] (69) 

In Eq. (69) and the above paragraph, the subscript QPPI refers to Quantum-force of the Positive-

attached-aether due to immersed Positive-detached-aether in the region Inside of the sphere. 

C.3.6. The Delta-Force and Delta-Energy Fields Inside a Spherical Attached-Aether Region 

Containing Like-Kind Detached-Aether. Injection of detached-aether causes like-kind attached-

aether to expand leading to the forces described in Eqs. (66) and (68), FTPP = KT0X0[1 + 2Kcx/0] 

and FQPP = (2KQ0/X0
3)[1 – 2Kcx/0], respectively. In order to achieve a force balance within the 

attached-aether, it has been proposed above that presence of detached-aether leads to a balancing 

force called the delta-force obeying Eq. (59), F = –FTL – FQ. At this point recall that the tension 

is directed inward (toward the center of the sphere) while the quantum-force is directed outward 

to arrive at F = KT0X0[1 + 2Kcx/0]r̂ – (2KQ0/X0
3)[1 – 2Kcx/0]r̂. And now recall Eq. (21), KT0X0 

= 2KQ0/X0
3, leaving F = KT0X0[1 + 2Kcx/0 – 1 + 2Kcx/0]r̂, or,  

FPP = 4KT0Kc(X0/0)xr̂ (70) 

Eq. (70) informs us of the total delta force needed to balance the difference between the tension 

and quantum forces, but it does not tell us how that balancing force arises. There are three 
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possibilities for the delta-force: 1) it could be a tension; 2) it could be a quantum-force; or 3) it 

could have components of both a tension and a quantum-force. Since the tension exceeds the 

quantum-force for the like-kind-immersion case, the delta-force could be a negative tension, a 

positive quantum-force or some combination of a tension and a quantum-force summing to the net 

force field given in Eq. (70). We propose that the delta-force of Eq. (70) is a positive quantum-

force; it is directed outward. 

Since Eq. (70) has the form of a tension force, the work done on the delta-fields due to the cube 

displacement is calculated from Eq. (32) as WD = (X0/0) Kc ∫ FPP dx, and substituting in Eq. (70) 

we obtain WD = (X0/0) Kc ∫ 4KT0Kc(X0/0)x dx = 2KT0Kc
2(X0/0)2x2 = 2KT0Kc

2(X0/0)2(J–1)2X2 

= 2KT0Kc
2(X0/0)2P2. (For the displacement, the integral is evaluated between zero and (J–1)X 

and we again note that (J–1)X = P. For the sign of the energy see section C.3.10.) 

The expansion energy is now calculated by using Eq. (65), WC = 2 ∫ FPP dw. We now use Eq. 

(62), x = (PX)w and include a minus sign since expansion will reduce the quantum-energy to 

obtain FPP = –4KT0KcX0(P/X)w/0. As specified in Eq. (65) we integrate from w = 0 to w = X/2. 

Hence WC = –2 ∫ 4KT0KcX0(P/X)w/0 dw = –4KT0X0Kc(P/X)w2/0 = –KT0X0KcPX/0. Recall 

that Eq. (65) is for one dimension only, and that inside the sphere the expansion will be the same 

in all three dimensions. Hence, WC3 = –3KT0X0KcPX/0. The total delta-energy of an arbitrary 

analysis-cube inside the spherical region is the displacement energy plus the expansion energy, 

EPPI = 2Kc
2KT0(X0/0)2P2 – 3KT0X0KcPX/0. The calculation will hold for any angle so we can 

replace P by |P|, and therefore summing the displacement and expansion energies leaves 

EPPI = 2Kc
2KT0(X0/0)2|P|2 – 3KT0X0Kc|P|X/0 (71) 
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C.3.7. The Total Energy Inside a Spherical Attached-Aether Region Containing Like-Kind 

Detached-Aether. The total energy of the analysis-cube is found by summing the tension, 

quantum and delta energies from Eqs. (67), (69) and (71). EPPI = ETPPI + EQPPI + EPPI = 

KT0X0
2[(1/2) + Kc|P|/0 + Kc

2|P|2/0
2 + 3X/X0 + 3Kc|P|X/2X00] + (2KQ0/X0

2)[(1/2) – Kc|P|/0 + 

Kc
2|P|2/0

2 – 3X/X0 + 3Kc|P|X/2X00] + 2Kc
2KT0(X0/0)2|P|2 – 3KT0Kc(X0/0)|P|X. Next, use 

Eq. (22), 2KQ0/X0
2 = KT0X0

2, to get EPPI = KT0X0
2 + 4(X0/0)2Kc

2KT0|P|2, or  

EP = KT0X0
2[1 + 4Kc

2P2/0
2] (72) 

(We’ll see below that we don’t need the second P nor I as subscripts.) 

C.3.8. The Force and Energy Fields Outside a Spherical Attached-Aether Region Containing 

Like-Kind Detached-Aether. Outside of the sphere Eq. (61) informs us that the analysis-cubes 

will be radially compressed, rather than expanded. A spherical shell originally located a distance 

r from the center of the sphere with thickness dr is pushed outward by a distance PR. Since there 

is no detached-aether outside of the sphere, the density is a constant 0 there and hence the volume 

of the shell remains constant during its outward displacement. With drP the shell thickness after it 

is displaced by PR, volume invariance results in 4r2dr = 4(r+PR)2drP, or drP/dr = r2/(r+PR)2 = 

r2/[r2(1+PR/r)2] ≈ 1 – 2PR/r. Now Eq. (61) gives PR = P0R0
2/r2, and therefore drP/dr ≈ 1 – 2P0R0

2/r3, 

or drP ≈ dr – 2drP0R0
2/r3. This results in the amount of radial compression being rP = drP – dr ≈ 

2drP0R0
2/r3, where dr can be any small radial distance. Assigning dr to the size of an analysis-cube, 

dr = X0, we obtain the radial compression of the analysis-cubes, X = 2X0P0R0
2/r3. At the edge of 

the sphere, the analysis-cubes are displaced radially outward by P0 and the radial compression will 

gradually lower the displacement of the more distant cubes to the displacement PR = P0R0
2/r2 given 

by Eq. (61). In this case, all cubes are still displaced in the outward direction however, and so the 

radial tension-force is increased, it is just that the amount of increase falls off as 1/r3. 
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In the directions perpendicular to r the cubes will expand. The area (A) of each spherical shell 

increases to 4(r+PR)2 from its original 4r2. We have (r+PR)2/r2 = (1+PR/r)2 ≈ 1+2PR/r, and we 

can see that the relative area expansion is A/A = 2PR/r. Now we form A = Y2, where Y is one of 

the perpendicular directions, and we see A/Y = 2Y, leading to (A/Y)/A = (2Y)/Y2, or A/A 

= 2Y/Y and hence Y/Y = PR/r. Therefore a cube of size Y = X0 will expand by Y = X0PR/r = 

X0P0R0
2/r3, or  

Y = X/2 (73) 

Now consider cube-P, a cube that is displaced by a distance P. Integrating Eq. (32), WTD = (X0/0) 

Kc∫ KTX0 dx, from 0 to P, the first-order work (against the first-order force FTP = KT0X0) done 

against the tension on cube-P from the displacement is WTD = (X0/0)KcKT0X0P. 

Setting the expansion effects aside to focus on the effect of displacement, the tension-energy of 

cube-P is ET = ET0 + WTD = (1/2)KT0X0
2 + KcKT0X0

2P/0. With ET = (1/2)KTX0
2, we arrive at the 

expression KT = KT0(1 + 2KcP/0). The tension-force remains FT = KTX0, but now KT includes the 

next order correction. As detached-aether is slowly injected, the center of the Pth cube will move 

a distance P. At the beginning of the motion FTP is of course just KT0X0, and it is at the end that 

FTP = KT0X0[1 + 2KcP/0]. With x again defined as the deviation of the cube center from its nominal 

center (which varies from 0 to P during the detached-aether injection) the full expression for 

tension-force in the analysis-cube is again given by Eq. (66), FTPP = KT0X0[1 + 2Kcx/0]. 

The second-order effect on the cube tension-energy due to the cube displacement is now included 

by integrating Eq. (32) from 0 to P, WTD = (X0/0) Kc∫ FTP dx = (X0/0)KcKT0X0 ∫ [1+2Kcx/0] dx 

= (X0/0)KcKT0X0x + Kc
2(X0/0)2KT0x2 = KcKT0X0

2P/0 + Kc
2KT0P2X0

2/0
2.  
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The compression energy is now calculated by including a minus sign in Eq. (63) since compression 

will release energy from the tension, WTC1 = –2 ∫ KTX0 dw. From Eq. (66), KTX0 = KT0X0[1 + 

2Kcx/0]. We now use Eq. (62), x = (PX)w, to obtain KTX0 = KT0X0[1+2Kc(P/X)w/0]. As 

specified in Eq. (63) we integrate from w = 0 to w = X/2. Hence WTC1 = –2 ∫ KTX0 dw = –2KT0X0 

∫ [1+2Kc(P/X)w/0] dw = –2KT0X0w – 2KT0X0Kc(P/X)w2/0 = –KT0X0X – KT0X0KcPX/20.  

Recall that Eq. (63) is for one dimension only. Eq. (73) informs that outside the sphere there is an 

expansion Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Also, since it is an expansion we do work against the 

tension and now our signs are positive. For each transverse dimension then we obtain WTC2 = 

2KT0X0w + 2KT0X0Kc(P/X)w2/0 = KT0X0X/2 + KT0X0Kc(P/X)X2/80, and the total expansion 

energy will be twice that, since there are two dimensions. Hence, WTC3 = WTC1 + 2WTC2 = –

KT0X0X – KT0X0KcPX/20 + KT0X0X + KT0X0KcPX/40 = –KT0X0KcPX/40. The total 

tension-energy of an arbitrary analysis-cube outside the spherical region is the undisturbed energy 

plus the displacement energy plus the expansion energy, ETPPO = (1/2)KT0X0
2 + KcKT0X0

2P/0 + 

Kc
2KT0P2X0

2/0
2 – KT0X0KcPX/40, or, ETPPO = KT0X0

2[(1/2) + KcP/0 + Kc
2(P/0)2 – 

KcPX/4X00]. Here we have derived the force for positive P. For negative P (or P at any angle) 

the work done is still positive, since such a cube is still expanding outward against the tension. 

Hence we will replace P by its absolute value, |P|: 

ETPPO = KT0X0
2[(1/2) + Kc|P|/0 + Kc

2(|P|/0)2 – Kc|P|X/4X00] (74) 

In Eq. (74) and the above paragraph, the subscript TPPO refers to Tension-energy of the Positive-

attached-aether due to immersed Positive-detached-aether in the region Outside of the sphere. 
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Turning to the quantum-field, the first-order energy freed as cube-P is displaced is given by Eq. 

(33), WQD = (X0/0)Kc∫2KQ/X0
3 dx, and the displacement is P. The work done against the quantum-

force-field as cube-P is displaced is WQD = –2PKcKQ0/X0
20. Setting the compression effects aside 

to focus on the effect of displacement, the quantum-energy of cube-P is EQ = EQ0 + WQD = KQ0/X0
2 

– 2PKcKQ0/X0
20 = (KQ0/X0

2)(1 – 2KcP/0). With EQ = KQ/X0
2, we arrive at the expression KQ = 

KQ0(1 – 2KcP/0). The quantum-force remains FQ = 2KQ/X0
3, but now KQ includes the next order 

correction. As detached-aether is slowly injected, the center of the Pth cube will move a distance 

P. At the beginning of the motion FQP is of course just 2KQ0/X0
3, and it is at the end that FQP = 

(2KQ0/X0
3)[1 – 2KcP/0]. With x again defined as the deviation of the cube center from its nominal 

center (which varies from 0 to P during the detached-aether injection) the full expression for the 

quantum-force in the analysis-cube is again given by Eq. (68), FQPP = (2KQ0/X0
3)[1 – 2Kcx/0]. 

The second order effect on the cube quantum-energy due to the cube displacement is now included 

with WQD = –(X0/0)Kc ∫ (2KQ0/X0
3)[1–2Kcx/0] dx = –(2KQ0Kc/X0

20)x + (2KQ0Kc
2/X0

20
2)x2 = 

–(2KQ0Kc/X0
20)P + (2KQ0Kc

2/X0
20

2)P2.  

The compression energy is calculated using Eq. (64) but with a positive sign, since compression 

will do work against the quantum-pressure, WQC1 = 4 ∫ KQ/X0
3 dw. From Eq. (68), FQPP = 

(2KQ0/X0
3)[1 – 2Kcx/0]. We now use Eq. (62), x = (PX)w, to obtain KQ/X0

3 = (KQ0/X0
3)[1–

2Kc(P/X)w/0]. As specified in Eq. (64) we integrate from w = 0 to w = X/2. Hence WQC1 = 

4(KQ0/X0
3) ∫ [1–2Kc(P/X)w/0] dw = 4(KQ0/X0

3)w – 4(KQ0/X0
3)Kc(P/X)w2/0 = 2(KQ0/X0

3)X 

– (KQ0/X0
3)KcPX/0.  

Recall that Eq. (64) is for one dimension only. Eq. (73) informs that outside the sphere there is an 

expansion Y = X/2 for each of the other two dimensions and for those dimensions we integrate 
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from 0 to Y/2, which is equal to 0 to X/4. Also, since it is an expansion the quantum-pressure 

will decrease and our signs are negative. For each transverse dimension then we obtain WQC2 = –

4(KQ0/X0
3)w + 4(KQ0/X0

3)Kc(P/X)w2/0 = –(KQ0/X0
3)X + (KQ0/X0

3)KcPX/40, and the total 

expansion energy will be twice that, since there are two dimensions. Hence, WQC3 = WQC1 + 2WQC2 

= 2(KQ0/X0
3)X – (KQ0/X0

3)KcPX/0 – 2(KQ0/X0
3)X + (KQ0/X0

3)KcPX/20. The total quantum-

energy of an arbitrary analysis-cube outside the spherical region is the undisturbed energy plus the 

displacement energy plus the expansion energy, EQPPO = KQ0/X0
2 – (2KQ0Kc/X0

20)P + 

(2KQ0Kc
2/X0

20
2)P2 – (KQ0/X0

3)KcPX/0 + (KQ0/X0
3)KcPX/20, or, EQPPO = (2KQ0/X0

2)[(1/2) – 

(Kc/0)P + (Kc
2/0

2)P2 – KcPX/4X00]. Here we have derived the force for positive P. For negative 

P (or P at any angle) the work done is still negative, since such a cube is still expanding outward 

reducing the quantum-energy. Hence we will replace P by its absolute value, |P|: 

EQPPO = (2KQ0/X0
2)[(1/2) – Kc|P|/0 + Kc

2(|P|/0)2 – Kc|P|X/4X00] (75) 

In Eq. (75) and the above paragraph, the subscript QPPO refers to Quantum-energy of the Positive-

attached-aether due to immersed Positive-detached-aether in the region Outside of the sphere. 

For the delta-energy, since Eqs. (66) and (68) are the same both inside and outside of the spherical 

region, Eq. (70), FPP = 4KcKT0(X0/0)xr̂, holds both inside and outside as well. The work done on 

the delta-field due to the cube displacement is calculated from Eq. (32) as WD = (X0/0) Kc ∫ FPP 

dx, and substituting in Eq. (70) we obtain WD = (X0/0) Kc ∫ 4KT0Kc(X0/0)x dx = 

2KT0Kc
2(X0/0)2x2 = 2KT0Kc

2(X0/0)2P2. (For the displacement, the integral is evaluated between 

zero and P. For the sign of the energy see section C.3.10.) 

The radial compression energy is now calculated by using Eq. (65), WC = 2 ∫ F dw. We now use 

Eq. (62), x = (PX)w and use a positive sign since compression will increase the quantum-energy 
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to obtain F = 4KT0KcX0(P/X)w/0. As specified in Eq. (65) we integrate from w = 0 to w = X/2. 

Hence WC1 = 2 ∫ 4KT0KcX0(P/X)w/0 dw = 4KT0X0Kc(P/X)w2/0 = KT0X0KcPX/0. Recall 

that Eq. (65) is for one dimension only. Eq. (73) informs that outside the sphere there is an 

expansion Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Also, since it is an expansion the delta pressure will 

decrease and our signs are negative. For each transverse dimension then we obtain WC2 = –

4KT0X0Kc(P/X)w2/0 = –KT0X0KcPX/40, and the total expansion energy will be twice that, 

since there are two dimensions. Hence, WC3 = WC1 + 2WC2 = KT0X0KcPX/0 – 

KT0X0KcPX/20 = KT0X0KcPX/20.  The total delta-energy of an arbitrary analysis-cube outside 

the spherical region is the displacement energy plus the expansion energy, EPPO = 

2KT0Kc
2(X0/0)2P2 + KT0X0KcPX/20. The calculation will hold for any angle so we can replace 

P by |P|, and therefore summing the displacement and expansion energies leaves  

EPPO = 2KT0Kc
2(X0/0)2|P|2 + KT0X0Kc|P|X/20 (76) 

The total energy of the analysis-cube is found by summing the tension, quantum and delta energies 

from Eqs. (74), (75) and (76). EPPO = ETPPO + EQPPO + EPPO = KT0X0
2[(1/2) + Kc|P|/0 + Kc

2|P|2/0
2 

– Kc|P|X/4X00] + (2KQ0/X0
2)[(1/2) – Kc|P|/0 + Kc

2|P|2/0
2 – Kc|P|X/4X00] + 

2Kc
2KT0(X0/0)2|P|2 + KT0X0Kc|P|X/20. Next, use Eq. (22), 2KQ0/X0

2 = KT0X0
2, to get EP = 

KT0X0
2[1 + 4Kc

2(P/0)2], which is Eq. (72). Hence we arrive at Eq. (72) both inside and outside of 

the sphere, and therefore Eq. (72) doesn’t need the I and O subscripts. 

C.3.9. The Energy Fields in the General Case. In the more general case, consider first the 

situation of a spherical positive-attached-aether region containing negative-detached-aether. For 

that situation, the cubes inside the sphere will compress instead of expanding, while those outside 
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of the sphere will radially expand instead of compressing. Appendix F shows that those changes 

still result in in Eq. (72), and that is why Eq. (72) doesn’t need the second P subscript. 

Next, observe that a derivation for the case of a spherical negative-attached-aether region will 

involve an identical derivation, but with P replaced by N and N replaced by P. This leaves a 

negative-attached-aether analysis-cube energy of 

EN = KT0X0
2[1 + 4Kc

2N2/0
2] (77) 

C.3.10. The Physical Nature of the Delta-Force for Like-Kind Immersion. In the sections 

above we make three assumptions regarding our analysis of the case of positive-detached-aether 

within positive-attached-aether: 1) that the delta-force is a positive pressure; 2) that displacement 

of the analysis-cube will not change its size; and 3) that the energies associated with the delta-

force are positive for the displacement, negative for expansion, and positive for compression. This 

section will validate these assumptions while providing a physical understanding of the delta-force. 

C.3.10.1. Delta-force Pressure. The delta-force F is a force that balances against the sum of FT 

and FQ. Above we have assigned a sign to F so that it adds to the weaker of FT and FQ as needed 

to provide the balancing force. If FT is less than FQ, F a positive tension providing an additional 

inward force. If FQ is less than FT, F is a positive pressure (a positive quantum-force) providing 

an additional outward force.  

The physical reason that F adds to the weaker of the forces, rather than subtracting from the 

stronger, is because the delta-force originates from the forced expansion and compression of 

attached-aether as caused by the immersion of detached-aether. For the case of positive-detached-

aether, a positive pressure is exerted by the positive-detached-aether onto the positive-attached-

aether and a positive tension is exerted onto the negative-attached-aether. As the cubes are then 

displaced, the work done makes these forces grow, and this force is the delta-force. Therefore the 
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delta-force is a positive pressure (positive tension) for the case of positive-detached-aether 

immersed into positive-attached-aether (negative-attached-aether). 

C.3.10.2. Analysis-Cube Size During Displacement. When cube-P of positive-attached-aether is 

displaced outward due to injection of positive-detached-aether, cube-P has its tension increased as 

described by Eq. (66), FTPP = KT0X0[1 + 2Kcx/0], and cube-P has its quantum-force decreased as 

described by Eq. (68), FQPP = (2KQ0/X0
3)[1 – 2Kcx/0]. If there were no delta-force, cube-P would 

therefore compress. However, the overlapping cube-N of negative-attached-aether has the opposite 

behavior (see Appendix F), and with no delta-force it would expand. (Eqs. (F14) and (F15) from 

Appendix F are FTNP = KT0X0[1 – 2Kcx/0] and FQNP = (2KQ0/X0
3)[1 + 2Kcx/0], respectively.) In 

order for the density postulate to hold as they displace, cube-P and cube-N must either both expand, 

both compress, or both retain their size. Since the sum of FT and FQ on cube-P, described by Eqs. 

(66) and (68), is equal and opposite to the sum of FT and FQ on cube-N, this symmetry informs 

that the cube sizes will not change during their displacement, which is what is assumed above.  

C.3.10.3. The Physics Leading to the Delta-Force Energies. We see that the delta-force arises 

between the positive-attached-aether and the negative-attached-aether in a way that leads to no 

displacement-induced size change of the displaced cubes. We also see that outward motion of 

positive-attached-aether causes FTP (the positive-attached-aether tension) to grow and FQP (the 

positive-attached-aether quantum-force) to recede, and hence FP (the positive-attached-aether 

delta-force) must grow to offset this growing difference. Since the displacement of the positive-

attached-aether is outward and the displacement of the negative-attached-aether is inward in this 

case, and since FP is outward, it is the displacement of the inward-moving negative-attached-

aether that does the work against FP to make it grow, since we must have an inward motion against 

the force to do work against it to make it grow. (The outward-moving positive-attached-aether 
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would do negative work on FP and therefore it cannot be the source of growth for FP.) Therefore 

we see that FP is a positive pressure that adds to the quantum-pressure within the positive-

attached-aether, and yet work is done against it by the motion of the negative-attached-aether. 

Similarly, the outward motion of the positive-attached-aether increases FN (the negative-attached-

aether delta-force) which is a positive tension within the negative-attached-aether. This is the 

mechanism by which each type of attached-aether exerts forces on the other in order to maintain 

equal densities as prescribed by the density postulate. 

As just mentioned, it is the moving negative-attached-aether that is doing work against the 

positive-attached-aether delta force. Inside the spherical region the negative-attached-aether will 

move radially inward and compress. The inward motion will do work against FP and hence the 

first term in the energy expression of Eq. (71) is positive. Outside the spherical region negative-

attached-aether will move radially inward and expand. The inward displacement does work against 

FP and hence the first term in the energy expression of Eq. (76) is positive.  

Appendix F shows that FP becomes directed inward when negative-detached-aether is immersed, 

and in that case the force will be a positive tension. In that case it will be the outward moving 

positive-attached-aether that does positive work against that delta-tension force, and the first term 

in each of Eqs. (F8) and (F11) are positive.  

C.3.10.4. Directional Dependence of the Force Parameter Changes. Here in section C.3 we 

have assumed that the displacement work increases or decreases the force parameters KT and KQ 

equally in all three directions. However, it is possible that nature only changes the force parameters 

in the direction that the work is done. If that is the case, the expansion and compression energies 

calculated above for the cases perpendicular to r will change, but it can be seen that the effect on 

the total energy will not change, since the delta force contribution will always cancel the combined 
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contribution from the tension and quantum-pressure forces. The displacement work calculation 

will remain the same as above, since the displacement work is the inner product of the force times 

the displacement, and the work will change the force parameters in the direction of displacement. 

Therefore, it will be up to future experimentation to determine whether or not the displacement 

work changes the force parameters in all three dimensions. Here we have chosen the simpler case 

(that the force parameters change equally in all dimensions) for analysis. 

C.3.10.5. Comments about the Delta Force. A first comment is that Eq. (71), EPPI = 

2Kc
2KT0(X0/0)2|P|2 – 3KT0X0Kc|P|X/0, will result in a negative energy if 

[3KT0X0Kc|P|X/0]/[2Kc
2KT0(X0/0)2|P|2] = [3X]/[2Kc(X0/0)|P|] > 1. |P| will be small for the 

cube at the center of the sphere and it grows from there, so in some regions the delta-energy will 

be negative. 

The cube expands while it displaces. Even though the displacement itself does not generate forces 

to expand the cube, immersion of the detached-aether does. We must check to see if this materially 

affects our derivations above. The energy at any value of x along our expansion is (1/2)KTX2. At 

x + dx the energy neglecting the displacement work is (1/2)KT[X + (Xdx/P)]2 ≈ (1/2)KTX2 + 

KTXX(dx/P). (Over an interval dx, the cube will expand dx/P of its full expansion of X at P.) 

The energy of the work done by displacement is KTXdx. And so, the energy change due to 

expansion divided by the energy change due to displacement work is KTXX(dx/P)/KTXdx = 

X/P, which goes to zero as our analysis-cube size shrinks to zero. Hence, this effect does not 

affect our analysis. 

C.3.10.6. The Delta-Force in Other Cases. Here in section C.3.10 we have looked primarily at 

the case of positive-detached-aether immersion into positive-attached-aether. For discussion of the 

remaining cases see Appendix F. 
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C.4 – The Electromagnetic Aetherial Flow Forces 

C.4.1. The Electrodynamic Flow Force Law. Empirically we propose: 

The Electrodynamic Flow Force Law: In regions where there is flowing detached-aether, both 

the detached-aether and the attached-aether density disturbances caused by the detached-aether 

will generate a force upon the attached-aether components that is proportional to the relative flow 

between the flowing detached-aether and the attached-aether; the force will be aligned with the 

flow, and only the transverse component of the flow leads to a force. (The longitudinal component 

of the flow does not lead to any force.) 

C.4.2. Transverse Velocities and “Image Charges”. It is always possible for any vector field U 

to be decomposed into a transverse component that has zero divergence, ∇ . UT, and a longitudinal 

component that has zero curl, ∇ x UL = 0. (The Helmholtz decomposition; here U = UT + UL.) In 

the electrodynamic flow force law, only the transverse component contributes. Also, “the attached-

aether density disturbances caused by the detached-aether” can be thought of as “image charges”. 

Eq. (41) is PA = 0 – PD/2 + ND/2, and we see that a moving detached-aether density PD or ND 

will lead to a change in the attached-aether-density PA (an “image charge”) that moves along with 

the detached-aether, and Eq. (42) has similar characteristics. The electrodynamic flow force law 

indicates that a flow force will be generated both from the moving detached-aether and from the 

“image charges”. 

C.4.3. The Flow Forces due to Detached-Aether Flow. For the case of detached-aether flowing 

through the positive-attached-aether, the aetherial flow force law is expressed mathematically as: 

FFP1 = KF1VPD[UPDT – ∂PT/∂t] – KF1VND[UNDT – ∂PT/∂t] (78) 

And for the flow forces on the negative-attached-aether we have 

FFN1 = KF1VND[UNDT – ∂NT/∂t] – KF1VPD[UPDT – ∂NT/∂t] (79) 
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In the above, the amount of detached-aether that is flowing is given by its density, , multiplied 

by its volume V. Here we make the empirical choices that flowing detached-aether exerts a force 

parallel (anti-parallel) to its motion against the like-kind (unlike-kind) attached-aether, and KF1 is 

the proportionality constant. It is the relative transverse velocity between the detached-aether and 

the attached-aether that results in the force. The velocity of the positive-detached-aether (negative-

detached-aether) is UPD (UND) and the velocity of the attached positive-aether (negative-aether) is 

∂P/∂t (∂N/∂t). The T subscripts designate the transverse component of the vector quantities. 

C.4.4. Flow Forces due to Attached-Aether Density Disturbance Flows. Moving detached-

aether leads to the flow forces just described, but the detached-aether also results in the pushing 

out of like-kind aether and the pulling in of unlike-kind aether as described in Eqs. (41) and (42). 

These attached-aether density disturbances result in an overall equating of the positive-aether 

density to the negative-aether density as prescribed by the density postulate. Hence, for every flow 

of detached-aether there is a corresponding flow of an attached-aetherial density disturbance that 

has an equal magnitude but of unlike-kind, reversing the sign of the force. In this case we now use 

a flow force constant KF2, since the underlying physical difference may lead to a different 

proportionality constant from the detached-aether flow force. The attached-aether density 

disturbances will therefore lead to force equations similar to those described in section C.4.3: 

FFP2 = –KF2VPD[UPDT – ∂PT/∂t] + KF2VND[UNDT – ∂PT/∂t] (80) 

FFN2 = –KF2VND[UNDT – ∂NT/∂t] + KF2VPD[UPDT – ∂NT/∂t] (81) 

Dimensional Analysis. With PD and ND having dimensions of C divided by m3, the dimensions 

of KF1 and KF2 are force divided by (C/m3 x m3 x m/s), or (kg m/s2) x s / (C m), or kg/ (C s). 
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C.5 – The Tension Force Effect on the Positive-Attached-Aether 

Next we will consider the force of tension, FT, acting upon an analysis-cube of attached-aether. 

Fig. 2 shows three analysis-cubes of attached-aether as well as two tension forces acting on the 

central cube. Of course, the real aether analysis-cubes (which are arbitrarily specified for analysis 

only) will have adjoining faces. Fig. 2 separates the faces only to make the drawing clear. It is 

known that tension forces in a solid lead to transversely polarized waves, with a familiar example 

being waves on a string. Since light is also known to be a transversely polarized wave, it has been 

postulated here that each attached-aether component is a solid under tension. Note that in Fig. 2 

the longitudinal tension force will predominantly cancel out, as the longitudinal component of FT2 

is almost exactly opposite to the longitudinal component of FT1. This leads to the observation that 

it is the transverse components of the tension that are responsible for the forces which cause the 

wave motion within the solid aether. 

 

Figure 2. Tension forces on a displaced cube of attached-aether. 

Each tension force will be directed from the center of one cube toward the center of the adjacent 

cube. Recall that the vector P is the position of the positive-attached-aether with respect to its 

undisturbed, equilibrium position. Hence, the cube with an equilibrium position of r is in general 

at r + P(x, y, z, t) and the cube with an equilibrium position of r + Δx = r + Δxi is in general at r 
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+ Δxi + P(x + Δx, y, z, t). (Here Δx is the width of our analysis-cube in the x direction.) The 

direction of the force is simply the direction of a vector D between these two cube centers where 

D = r + Δxi + P(x+Δx, y, z, t) – r – P(x, y, z, t) = Δxi + P(x+Δx, y, z, t) – P(x, y, z, t) (82) 

Assuming small oscillations, [P(x+Δx, y, z, t) – P(x, y, z, t)]/Δx  = ∂P/∂x << 1. Now form the 

vector D/Δx: 

D/Δx = i + ∂P/∂x = i + (∂Px/∂x)i + (∂Py/∂x)j + (∂Pz/∂x)k (83) 

Keeping terms to first order in small quantities the magnitude of D/Δx is: 

|D/Δx| = [(1 + ∂Px/∂x)2 + (∂Py/∂x)2 + (∂Pz/∂x)2]1/2 ≈ 1 + ∂Px/∂x (84) 

Next, form a unit vector d in the direction of D/Δx : 

d = (D/Δx)/|D/Δx| ≈ [(1 + ∂Px/∂x)i + (∂Py/∂x)j + (∂Pz/∂x)k]/[1 + ∂Px/∂x]  

≈ i + (∂Py/∂x)j + (∂Pz/∂x)k (85) 

With d now derived, the tension force can be expressed as FT times d, where FT is the magnitude 

of the tension force FT. The magnitude of FT will in general be a function of position and time 

FT(x, y, z, t). Hence, FT on the left face of the cube is  

FT(x, y, z, t) = – FT(x, y, z, t)[i + {∂Py(x, y, z, t)/∂x}j + {∂Pz(x, y, z, t)/∂x}k] (86) 

(In Eq. (86) the minus sign comes from inspection of Fig. 2.) FT on the right face is FT(x+Δx, y, 

z, t) = FT(x+Δx, y, z, t) [i + {∂Py(x+Δx, y, z, t)/∂x}j + {∂Pz(x+Δx, y, z, t)/∂x}k]. At this point the 

first order Taylor series expansion can be used: FT(x+Δx, y, z, t) ≈ FT(x, y, z, t) + (∂FT/∂x)Δx.  

Here, (∂FT/∂x)Δx << FT(x, y, z, t). This leaves FT on the right face as: 

FT(x+Δx, y, z, t) =  

[FT(x, y, z, t) + (∂FT/∂x)Δx][i + {∂Py(x+Δx, y, z, t)/∂x}j + {∂Pz(x+Δx, y, z, t)/∂x}k] (87) 

The total force on the cube due to the tension forces on the two YZ faces is the sum of Eqs. (86) 

and (87), or 
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FTYZ = [FT(x, y, z, t) + (∂FT/∂x)Δx][i + {∂Py(x+Δx, y, z, t)/∂x}j + {∂Pz(x+Δx, y, z, t)/∂x}k]  

– FT(x, y, z, t)[i + {∂Py(x, y, z, t)/∂x}j + {∂Pz(x, y, z, t)/∂x}k] (88) 

Next, define T0 as the nominal magnitude of the attached-aetherial-tension per unit area. (T0 is the 

tension per unit area in the absence of sources, sinks and waves.) It is assumed that deviations of 

FT(x, y, z, t) from T0ΔyΔz will always be small, or FT(x, y, z, t) ≈ T0ΔyΔz, leaving 

FTYZ = [T0ΔyΔz + (∂FT/∂x)Δx][i + {∂Py(x+Δx, y, z, t)/∂x}j + {∂Pz(x+Δx, y, z, t)/∂x}k]  

– T0ΔyΔz[i + {∂Py(x, y, z, t)/∂x}j + {∂Pz(x, y, z, t)/∂x}k] (89) 

It is assumed that ∂Py/∂x and ∂Pz/∂x are small quantities in comparison to 1. Also we note that 

{∂Py(x+Δx, y, z, t)/∂x} – {∂Py(x, y, z, t)/∂x} = Δx∂2Py/∂x2 in the limit as Δx  0 and we have a 

similar equation for for ∂2Pz/∂x2. Keeping only the terms that are lowest order in small quantities, 

FTYZ = (∂FT/∂x)Δxi + T0ΔxΔyΔz(∂2Py/∂x2)j + T0ΔxΔyΔz(∂2Pz/∂x2)k]  (90) 

What remains is to further evaluate the term (∂FT/∂x)Δx. Recall Eq. (15): 

FT0 = KT0XQ (15) 

(As discussed above, KT will vary away from KT0. However, here we are considering the dominant 

first order term for KT and we use KT = KT0 here.) Also recall that XQ is the variable size of the 

analysis-cube of aether in one dimension and here XQ ≈ X0. Dividing FT0 by the area of the cube 

face perpendicular to x results in KT0X0/ΔyΔz = KT0X0/X0
2 = KT0/X0. (Here we use Δy = Δz = X0.) 

Recalling that T0 equals the magnitude of the tension force per unit area that we just found,  

T0 = KT0/X0 (91) 

In the general case, the x displacement of the right side of the cube is Px(x + X0, y, z, t) while the 

displacement at the left side is Px(x, y, z, t). The wall separation is X0 plus the difference of these 

displacements so the tension force per unit area that results from Eq. (15) is 

FT/ΔyΔz = FT/X0
2 = KT0XQ/X0

2 = (KT0/X0
2)[X0 + Px(x + X0, y, z, t) – Px(x, y, z, t)] (92) 
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Rearranging Eq. (91) KT0 = T0X0, and substituting this into Eq. (92): 

FT/X0
2 = (T0/X0)[X0 + Px(x + X0, y, z, t) – Px(x, y, z, t)] =  (T0/X0)[X0 + Δx∂Px/∂x] (93) 

 ([Px(x + X0, y, z, t) – Px(x, y, z, t)]/Δx = ∂Px/∂x as Δx = X0  0 for our analysis-cube.) With Δx 

= X0 we have FT/X0
2 = T0[1 + ∂Px/∂x]. From which ∂FT/∂x = T0X0

2[∂2Px/∂x2] and hence  

(∂FT/∂x)Δx = (∂FT/∂x)X0 = T0X0
3[∂2Px/∂x2] = ΔxΔyΔzT0(∂2Px/∂x2) (94) 

Note again that here we have used Δx = Δy = Δz = X0 and we allow our analysis-cube to shrink to 

zero. Substituting Eq. (94) into Eq. (90) leaves: 

FTYZ = ΔxΔyΔz[T0(∂2Px/∂x2)i + T0(∂2Py/∂x2)j + T0(∂2Pz/∂x2)k] (95) 

Eq. (95) is the tension force on a small cube of aether that results from the tension forces that are 

present on the yz faces of the cube. By doing the same derivation for the xy and xz faces analogous 

expressions for the forces are derived in those directions, FTXZ = ΔxΔyΔz[T0(∂2Px/∂y2)i + 

T0(∂2Py/∂y2)j + T0(∂2Pz/∂y2)k] and FTXY = ΔxΔyΔz[T0(∂2Px/∂z2)i + T0(∂2Py/∂z2)j + T0(∂2Pz/∂z2)k. 

The sum of the three force components FTYZ, FTXZ and FTXY results in the total force expression, 

and recalling that there is no net longitudinal tension force, that P is just the sum of its components, 

and that the Laplacian is ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, the equation for the transverse tension 

force, FTPT, on an arbitrary cube of positive-attached-aether can be expressed as: 

FTPT = ΔxΔyΔzT0∇2P (96) 

 

C.6 – Flow Force Effect on the Positive-Attached-Aether 

Recall Eqs. (78) and (80): 

FFP1 = KF1VPD[UPDT – ∂PT/∂t] – KF1VND[UNDT – ∂PT/∂t] (78) 

FFP2 = –KF2VPD[UPDT – ∂PT/∂t] + KF2VND[UNDT – ∂PT/∂t] (80) 

The flow force on the positive-attached-aether is given by the sum of Eqs. (78) and (80): 
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FFP = FFP1+FFP2 = (KF1–KF2)VPD[UPDT–∂PT/∂t] – (KF1–KF2)VND[UNDT–∂PT/∂t] (97) 

We now define KF3 and rewrite Eq. (97) in terms of KF3 

KF3 = KF2 – KF1 (98) 

FFP = FFP1+FFP2 = –KF3VPD[UPDT – ∂PT/∂t] + KF3VND[UNDT – ∂PT/∂t] (99) 

Next, we will drop the terms ∂PT/∂t from Eq. (99) as we will show shortly that ∂P/∂t << UPD. 

Expanding the volume of the analysis-cube V as xyz this leaves us with: 

FFP = –KF3PDxyzUPDT + KF3NDxyzUNDT = KF3ΔxΔyΔz[NDUNDT – PDUPDT]  (100) 

To see that ∂P/∂t << UPD, consider Figure 3. If a sphere of detached-aether moves upward so that 

the bottom of the sphere occupies the position where its top used to be, the attached-aether of like-

kind that was originally at the top of the sphere, and was originally displaced upward (the vector 

T in Fig. 3), will now be at the bottom of the sphere, and it will be displaced downward (the vector 

B in Fig. 3). Therefore, the attached-aether moves downward as a result of the upward flow of the 

like-kind detached-aether: the flow of attached-aether within the sphere is in the opposite direction 

of the flow of like-kind detached-aether. Since the unlike-kind attached-aether has the opposite 

displacement (it is pulled in rather than being pushed out) the flow of attached-aether within the 

sphere is in the same direction as the flow of unlike-kind detached-aether. 
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Figure 3. A sphere of detached-aether results in like-kind attached-aether being pushed radially 

outward according to the density law. At the top pole of the sphere (T) the displacement of the 

attached-aether is in the upward direction, and at the bottom of the sphere (B) the displacement is 

in the downward direction. 

To evaluate the magnitude of the driven flows, first consider Figure 3 for the case of positive-

detached-aether moving with velocity U in the upward (z) direction. Specify t = 0 as the time 

where the situation is as shown in the figure. Then, at t = 0 the displacement of the positive-

attached-aether at the top of the sphere is Pz(x, y, z, t) = Pz(0, 0, R, 0) = dr, where dr is the 

expansion of the attached-aether due to the presence of the detached-aether within the sphere.  

Since Eq. (39) informs that the positive-attached-aether density within the sphere becomes 0 – 

PD/2 due to the detached-aether, the amount Q/2 = (PD/2)(4/3)R3 must be pushed into the 

volume of a shell surrounding the sphere, and, with no detached-aether in that shell, the density in 

that shell will be 0. Hence, 04R2dr = Q/2, and we see that dr/R = (Q/2)/04R3 = 

[(PD/2)(4/3)R3]/04R3 = PD/60. Next, with U the velocity of the sphere, notice that the sphere 

will move a distance 2R upward in the time t = 2R/U and at that time Pz(x, y, z, t) = Pz(0, 0, R, 



 

57 
 

2R/U) = –dr, since the point of analysis is now at the bottom of the sphere. Now, define ∂PD/∂t as 

the driven flow (subscript D) of the attached-aether due to the motion of the detached-aether. We 

find that ∂PD/∂t = [Pz(0, 0, R, 2R/U) – Pz(0, 0, R, 0)]/[2R/U] = –2dr/[2R/U] = –Udr/R = –

UPD/60. The negative-attached-aether will have the opposite displacement, so ∂ND/∂t = 

+UPD/60. Since throughout this work we have PD << 0, for the case presented here we see that 

∂PD/∂t << U and ∂ND/∂t << U. We assume these conditions hold generally, and hence can drop 

the term ∂P/∂t with respect to UPD when arriving at Eq. (100). 

 

C.7 – Longitudinal Tension-Force, Delta-force and Quantum-Force 

Effects on the Positive-Attached-Aether 

In section C.3, Eq. (59), we show that the delta-force (F), the quantum-force (FQ) and the 

longitudinal-tension-force (FTL) sum to zero longitudinally, and both F and FQ are purely 

longitudinal forces. (Section C.3 only considered longitudinal forces arising from immersed 

detached-aether.) Since they sum to zero, F, FQ and FTL do not appear in the equation of motion 

of the positive-attached-aether. 

 

C.8 – The Positive-Attached-Aether Equation of Motion 

Now that all of the forces acting on the positive-attached-aether have been identified and evaluated, 

it is possible to determine the equation of motion for the positive-attached-aether. It will be 

assumed here that the velocity of the attached-aether is small compared to the velocity of light, 

and hence the equation F = ma will be applied. The mass of an analysis-cube of aether is equal to 
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its mass density times its volume ΔxΔyΔz and the acceleration is equal to the second partial 

derivative of the position of the cube with respect to time, ∂2P/∂t2. We will now define m0 as the 

nominal aetherial mass density. Putting this all together, and recalling the forces on the positive-

attached-aether for the flow, Eq. (100), FFP, and transverse tension, Eq. (96), FTPT, leaves: 

FP = ma = m0ΔxΔyΔz(∂2P/∂t2) = FTPT + FFP 

= ΔxΔyΔzT0∇2P + KF3ΔxΔyΔz[NDUNDT – PDUPDT] (101) 

Now, eliminate the factor ΔxΔyΔz from each term: 

m0(∂2P/∂t2) = T0∇2P + KF3[NDUNDT – PDUPDT] (102) 

In order to simplify the mathematics, the vector J will now be defined as the net current density of 

detached-aether that flows through the attached-aether. J is the density of the positive-detached-

aether times its velocity, minus the density of the negative-detached-aether times its velocity: 

J = PDUPD – NDUND  (103) 

With JT the transverse component of J, substituting Eq. (103) into Eq. (102) leaves: 

m0(∂2P/∂t2) = T0∇2P – KF3JT  (104) 

Now divide each side of Eq. (104) by T0: 

(m0/T0)(∂2P/∂t2) = ∇2P – (KF3/T0)JT (105) 

And then multiply each side of the equation by minus one and take the Laplacian term over to the 

left-hand side: 

∇2P – (m0/T0)(∂2P/∂t2) = (KF3/T0)JT (106) 

Now set the following relationship: 

T0 = m0c2
 (107) 

Rearranging Eq. (107) to m0/T0 = 1/c2 Eq. (106) becomes: 

∇2P – (1/c2)(∂2P/∂t2) = (KF3/T0)JT (108) 
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Dimensional analysis. m0 has dimensions kg/m3; T0 has dimensions of force/m2, or kg m/s2 m2, or 

kg/s2 m. Hence, m0/T0 has dimensions (kg/m3)/(kg/s2 m) = (s2/m2), the same as 1/c2. 

 

C.9 – The Negative-Attached-Aether Equation of Motion 

The derivation of the equation of motion for the negative-attached-aether will follow the same 

steps as does the derivation for the positive-attached-aether, although there are some differences 

which we can describe term by term. Referring to the derivations above, it is seen that the 

Laplacian and acceleration terms only involve replacing P by N, provided we assume that the 

density 0, mass density m0, and nominal tension T0 are equal for both types of aether. The flow 

force law has the opposite sign. (See Eqs. (78), (79), (80) and (81).) Making these changes leaves: 

∇2N – (1/c2)(∂2N/∂t2) = –(KF3/T0)JT (109) 

 

C.10 – Transverse and Longitudinal Separations of the Attached-Aether 

Consider now the transverse portions of Eqs. (108) and (109): 

∇2PT – (1/c2)(∂2PT/∂t2) = (KF3/T0)JT (110) 

∇2NT – (1/c2)(∂2NT/∂t2) = –(KF3/T0)JT (111) 

It can be seen that Eq. (110) for PT is nearly identical to Eq. (111) for NT, as they only differ in 

the sign of the right-hand side. At this point, recall the physics of the situation: PT and NT are the 

transverse portion of the vector displacements of the positive and negative attached-aether, 

respectively. These vector displacements will be caused by the forces acting upon the attached-

aether, which are the tension and flow forces. For the transverse component of the displacements, 

the flow force on the positive-attached-aether is the equal and opposite of the flow force on the 
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negative-attached-aether. Since the tension results from a restorative force proportional to relative 

displacements within each individual aether component (see Fig. 2 above), and since both the 

presence of detached-aether and the flow force act to displace the components in opposite 

directions, the tension force will also act in opposite directions. Hence, we have: 

NT = –PT (112) 

Recalling Eq. (58), NL = –PL, and summing Eqs. (58) and (112) leaves: 

N = –P (113) 

 

C.11 – Maxwell’s Equations in Terms of Potentials 

Now make the following assignment: 

PT = –NT = –KF3A/0T0  (114) 

In Eq. (114) 0 is the permeability of free space. Substitution of Eq. (114) into Eq. (110) yields the 

same equation as substitution of Eq. (114) into Eq. (111): 

∇2A – (1/c2)(∂2A/∂t2) = –0JT (115) 

Dimensional analysis. At the end of section C.4 we see the dimensions of KF1 and KF2 as kg/C s, 

and hence KF3 has dimensions of kg/C s; T0 has dimensions of kg m s-2/m2 or kg/(m s2). 0 has 

units kg m/C2. Therefore KF3/0T0 has dimensions (kg/C s)/[(kg m/C2)(kg/(m s2)] = C s/kg, and 

thus by Eq. (114) A has dimensions of kg m/C s. 

Now J is a vector field which we are free to decompose into its longitudinal and transverse 

components J = JL + JT. Also from Eq. (103) we have J = PDUPD – NDUND. We will choose the 

conventional definition of JL: 

JL = – (1/4) ∇ ∫ [ ( ∇ ’ . J ) / | x – x ’ | ] d3x’ (116) 
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Next note that the solution to Poisson’s Equation, Eq. (55), ∇2 = –D/0, is: 

(x,t) = (1/40) ∫ [D (x ’ , t) / | x – x ’ | ] d3x’ (117) 

Now take the gradient of (x,t) and then take its partial time derivative: 

∂∇(x,t)/∂t = (1/40) ∇ ∫ ∂[D (x ’ , t)/∂t / | x – x ’ | ] d3x’ (118) 

Using the continuity equation, ∂D/∂t = –∇ . J, Eqs. (116) and (118) reveal: 

0∂∇(x,t)/∂t = JL (119) 

At this point, we can therefore add the quantity –0JL + 00∂∇/∂t to Eq. (115), since this is 

adding zero. And with 00 = 1/c2 we get: 

∇2A – (1/c2)(∂2A/∂t2) = –0JT – 0JL + (1/c2)∂∇/∂t (120) 

or, 

∇2A – (1/c2)(∂2A/∂t2) = –0J + (1/c2)∂∇/∂t (121) 

Further, since Eq. (114) informs that A is a transverse vector: 

∇ . A = 0 (122) 

It is also timely to recall Eq. (55): 

∇2 = –D/0 (55) 

Eqs. (55), (121) and (122) are readily recognized as Maxwell's Equations in the Coulomb gauge 

in terms of potentials. 
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C.12 – Maxwell’s Equations in Terms of Fields 

To get the more familiar Maxwell’s Equations in terms of fields, start by defining two arbitrary 

vectors E and B: 

E = –∇– ∂A/∂t (123) 

B = ∇xA (124) 

Applying the partial derivative with respect to time to Eq. (123): 

∂E/∂t = –∂∇/∂t– ∂2A/∂t2 (125) 

Next, add a term ∇(∇ . A) to Eq. (121), which is permissible since by Eq. (122) ∇ . A = 0: 

∇2A – (1/c2)(∂2A/∂t2) = –0J + (1/c2)∂∇/∂t + ∇ (∇ . A) (126) 

Now rearrange terms (first equality below), and use Eq. (125) for ∂E/∂t (second equality below): 

∇(∇ . A) – ∇2A = 0J – (1/c2)∂∇/∂t – (1/c2)(∂2A/∂t2) = 0J + (1/c2)∂E/∂t (127) 

Now use ∇xB = ∇x(∇xA) = ∇(∇ . A) – ∇2A to get: 

∇xB = 0J + (1/c2)∂E/∂t (128) 

Taking the divergence of Eq. (123), ∇ . E = –∇ . ∇– ∂(∇ . A)/∂t. With ∇ . A = 0, and ∇ . ∇ = ∇2, 

and with Eq. (55) ∇2 = –D/0 this leaves: 

∇ . E = D/0 (129) 

Taking the divergence of Eq. (124), along with the identity ∇ . (∇xA) = 0: 

∇ . B = 0 (130) 

Now take the curl of Eq. (123), ∇xE =  –∇x∇– ∂(∇xA)/∂t and recalling Eq. (124) B = ∇xA 

and using the identity ∇x∇ = 0 we get 
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∇xE =–∂B/∂t (131) 

Eqs. (128) through (131) are Maxwell’s Equations in terms of fields. 

 

C.13. Field-Energy Effects on the Detached-Aether 

Consider a region where there is an ambient attached-aether longitudinal displacement PAL = –

NAL not equal to zero. We have seen above in section C.2 that such a displacement is caused by 

detached-aether within the attached-aether, and Eqs. (72) and (77) of section C.3, show that total 

analysis-cube energies of EP = KT0X0
2[1+4Kc

2P2/0
2] and EN = KT0X0

2[1+4Kc
2N2/0

2] are 

associated with such displacements. 

Now consider a sphere of detached-aether placed within the attached-aether. Without loss of 

generality we can assume an ambient displacement of PAL = –NAL in the x direction, and that our 

sphere is centered at the origin. For analysis we will divide the sphere into slices of thickness ΔY 

centered at y = Y, and then further divide those slices into strips with thickness ΔZ centered at z = 

Z, as shown in Figures 4 and 5. 

 

Figure 4. A sphere of detached-aether, and a slice of width ΔY. 



 

64 
 

Figure 4 shows a view of a sphere of detached-aether with radius R. Examining a slice of thickness 

ΔY we can see that the half-height of that slice will be H = (R2 – Y2)1/2. 

 

Figure 5. A slice of detached-aether, and a strip of width ΔZ. 

Figure 5 shows a view of the slice of detached-aether. The slice has the half-height, H, that we 

found in Fig. 4. Examining the strip of thickness ΔZ centered at Z we can see that the half-length 

of that strip will be L = (H2 – Z2)1/2. The strip shown in Fig. 5 has dimensions of ΔY by ΔZ by L. 

Our aim is to evaluate the force on our sphere of detached-aether when it is immersed in a region 

of attached-aether displacement where we have finite PL = –NL. Toward that aim, we first observe 

that the sphere of detached-aether will cause its own longitudinal attached-aether displacement. 

Due to the symmetry of the situation, a sphere of positive-detached-aether will push nearby 

positive-attached-aether outward radially, and it will pull nearby negative-attached-aether in 

radially. With a detached-aether density inside of the sphere of PD, the positive-attached-aether 

density inside the sphere will be PIN = 0 – PD/2. Without any detached-aether inside of it, a 

sphere of radius R has (4/3)R30 of positive-attached-aether inside. To lower the density to PIN 

requires that the radius of the sphere expand so that (4/3)(R+R)3PIN = (4/3)R30, or PIN = 
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R30/(R+R)3 = 0/(1+R/R)3 ≈ 0(1 – 3R/R). Recalling PIN = 0 – PD/2 we obtain PD/2 ≈ 

30R/R, or, R/R = PD/60. The displacement of the edge of the sphere is Pedge = R(PD/60). 

Now the displacement will linearly grow from the center of the sphere, so that in general, with 

Psphere being the displacement caused by the sphere, inside the sphere we have: 

Psphere = (PD/60)r = (PD/60)(xi + yj + zk).  (132) 

If there is now an ambient longitudinal attached-aether displacement PAL, which without loss of 

generality can be considered to be in the X direction, PAL = PAi, then the total attached-aether 

displacement within the sphere becomes PTOT = PAL + Psphere = [(PD/60)x + PA]i + (PD/60)yj 

+ (PD/60)zk. (The displacement of the attached-aether induced by the detached-aether (Psphere) 

is purely longitudinal, and hence will only add and subtract with respect to the longitudinal ambient 

displacement, and therefore we look here at PAL, the longitudinal ambient displacement of P.) 

Eq. (72) relates that EP = KT0X0
2[1+4Kc

2P2/0
2]. Since the nominal energy (prior to any 

displacement) is KT0X0
2, we see that the energy due to displacement is 4Kc

2KT0X0
2P2/0

2.  

Returning to Figure 5, the strip of positive-attached-aether is centered at z and y. Within the strip, 

the displacement energy of an analysis-cube centered at x will be: 

EPP(x,y,z) = 4Kc
2KT0X0

2P2/0
2 = 4Kc

2KT0(X0
2/0

2)[PTOT(x,y,z)]2 

= 4Kc
2KT0(X0

2/0
2)[(PD/60)2x2 + 2(PD/60)xPA + PA

2 + (PD/60)2y2 + (PD/60)2z2]  (133) 

In Eq. (133) the subscript PP is for the case where positive-detached-aether is immersed in 

positive-attached-aether. We can now evaluate the force present on the strip of attached-aether 

depicted in Fig. 5. For a small additional (and virtual) displacement x, the energy will become: 

EPP(x+x,y,z) = 4Kc
2KT0(X0

2/0
2)[PTOT(x+x,y,z)]2  (134) 

= 4Kc
2KT0(X0

2/0
2)[(PD/60)2(x+x)2+2(PD/60)(x+x)PA+PA

2+(PD/60)2y2+(PD/60)2z2]  
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Subtracting Eq. (133) from Eq. (134) leaves the energy change resulting from the additional 

displacement: 

EPP(x,y,z) = EPP(x+x,y,z) – EPP(x,y,z)  

= 4Kc
2KT0(X0

2/0
2)[2(PD/60)2xx + (PD/60)2x2 + 2(PD/60)xPA] (135) 

In the above expression we can drop the term that is second order in the small quantity x, as we 

will take the limit as x  0. We can now evaluate the force on the strip by considering the sum 

of all volume elements within the strip. We can drop the term 2(PD/60)2xx because for every 

value of positive x on our strip there is a value of negative x of equal magnitude. (The term 

2(PD/60)2xx cancels out over the strip because of symmetry.) The surviving term, 

8Kc
2KT0(X0

2/0
2)(PD/60)xPA, is independent of x, y or z. Recalling that Eq. (135) refers to the 

change in energy for an analysis-cube within the strip, we can form the relation for the force on 

the whole strip by summing over all of the analysis-cubes in the strip (strip is the symbol for that 

sum). Analyzing a strip of length 2L, width X0, and height X0, there will be 2L/X0 analysis-cubes 

in that strip. The force in that strip will be  

FstripPP = strip {EPP(x,y,z)/x} = (2L/X0)8Kc
2KT0(X0

2/0
2)(PD/60)xPAx 

= 8LKc
2KT0X0PDPA/300

2 = 8Kc
2KT0LX0

2PDPA/300
2X0  (136) 

The force on the strip shown in Fig. 5 is proportional to the volume of the strip (2LX0
2) but 

independent of x, y and z. The sum of the volume of all of the strips will be the volume of the 

sphere, Vsphere. Hence, we can sum the forces from all such strips to arrive at: 

FspherePP = 4Kc
2KT0VspherePDPA/300

2X0 (137) 

Immersed positive-detached-aether will also affect the negative-attached-aether. In that case, the 

negative-attached-aether is pulled into the sphere rather than pushed out. Hence, both the 

displacement of the negative-attached-aether due to positive-detached-aether (Nsphere) and the 
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ambient longitudinal negative-attached-aether displacement (NAL) are equal in magnitude but 

opposite in sign to the case of the positive-attached-aether. (The analysis simply replaces by Psphere 

by –Nsphere and PAL by –NAL.) NTOT = NAL + Nsphere = –PAL + –Psphere = –PTOT, and since the 

energies in Eqs. (134) and (135) are proportional to PTOT
2 for the positive case, replacement of 

PTOT by NTOT = –PTOT leaves NTOT
2 = PTOT

2 in the analysis. This results in the same force on the 

positive-attached-aether from each component, FspherePN = FspherePP = 

4Kc
2KT0VspherePDPA/300

2X0. The total force is thus: 

FsphereP = FspherePP + FspherePN = 8Kc
2KT0VspherePDPA/300

2X0 (138) 

Observe that the force is aligned with the direction of x in the above analysis, since the energy 

varies with x. We have chosen x to be aligned with PAL, so the force is aligned with PAL. Inside 

the sphere shown in Fig. 5 the total aetherial displacement P increases in the direction of PAL as a 

result of the detached-aether pushing the attached-aether outward. (On one side of the sphere the 

attached-aether is pushed in the opposite direction of PAL while on the other side it is pushed in 

the same direction as PAL. Within the sphere, P increases from one side to the other.) Hence, the 

positive-attached-aether will be forced in the direction opposite of PAL as lower energy (lower P) 

is preferred. The force on the positive-detached-aether will be in the opposite direction as the force 

on the positive-attached-aether. This can be thought of as analogous to pushing a ball downward 

through a tub of water: as the disturbance (the ball, or the detached-aether) is forced down, the 

substance it is pushed through (the water, or the attached-aether) is forced in the opposite direction. 

Hence, the force on the detached-aether is in the direction of PAL. 

FsphereP = 8Kc
2KT0VspherePDPAL/300

2X0 (139) 

We now recall Eq. (56) PL – NL = –0∇/0 and using Eq. (113), N = –P, PAL – NAL = 2PAL = –

0∇/0. This allows us to arrive at  
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Fsphere = –4Kc
2KT0VspherePD0∇/30

2X00
2 (140) 

Next, since Eq. (72) relates that EP = KT0X0
2[1 + 4Kc

2P2/0
2], we see that two overlapped spheres 

of positive-detached-aether will have an energy in their cubes of EP = 2KT0X0
2[1 + 4Kc

2(2P0)2/0
2] 

= 2KT0X0
2[1 + 16Kc

2P0
2/0

2], while if those same two spheres are at a great distance the energy 

will be EP = 2KT0X0
2[1 + 4Kc

2P0
2/0

2]. (Here P0 is the displacement of a cube at an arbitrary 

position within an isolated sphere; overlapping two spheres will double such displacements.) Since 

nature favors smaller energy, we see that the force between amounts of positive-detached-aether 

is repulsive, agreeing with our sign choice leading to Eq. (140). 

We now set the value of KT0 

KT0 = 30
2X00

2/4Kc
20  (141) 

Note that Eq. (10) leads to X0 = 0/n, or n = 0/X0. From Eq. (13), KT0 = KT0/n = KT0X0/0. Hence 

KT0 varies linearly with X0 (X0 is the size of our analysis-cube) and this is consistent with our 

assignment in Eq. (141). We next observe that the density of the detached-aether multiplied by the 

volume of the sphere is equal to a quantity called Q, the charge in the sphere, VspherePD = Q. With 

this, and with Eq. (141), we then arrive at FLD, the Lorentz force on an amount of positive-

detached-aether immersed within a region of ambient attached-aether displacement: 

FLD = –Q∇ (142) 

While Eq. (142) has only been derived for the case of positive-detached-aether immersion, notice 

that negative-detached-aether will reverse the sign of the force in the derivation, and therefore Eq. 

(142) holds for either positive or negative detached-aether immersion. 

Dimensional Analysis. KT0 = 30
2X00

2/4Kc
20. 1/0 has dimensions m3kg/s2C2, 0 has dimensions 

of C/m3, X0 and 0
2 have dimensions of m, and Kc

2 is dimensionless. So, KT0 has dimensions of 
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(m3kg/s2C2)(C/m3)2m3 = kg/s2. We also know that KT0X0
2 is an energy, kg-m2/s2, confirming our 

result that KT0 has dimensions of kg/s2. 

 

C.14. Flow Force Effects on the Detached-Aether 

To determine the flow force on the detached-aether, recall Eqs. (78) and (79) from section C.4.3: 

FFP1 = KF1VPD[UPDT – ∂PT/∂t] – KF1VND[UNDT – ∂PT/∂t] (78) 

FFN1 = KF1VND[UNDT – ∂NT/∂t] – KF1VPD[UPDT – ∂NT/∂t] (79) 

Eqs. (78) and (79) are the forces from the flow of the detached-aether onto the positive-attached-

aether and negative-attached-aether respectively. FLF, the total Lorentz flow force on the detached-

aether, will be the reaction force, which is equal to the negative of the sum of the forces given in 

Eqs. (78) and (79): 

FLF = KF1VPD(∂PT/∂t – ∂NT/∂t) – KF1VND[∂PT/∂t – ∂NT/∂t] 

= KF1Q(∂PT/∂t–∂NT/∂t) (143) 

In Eq. (143) Q is defined as V(PD–ND). Now recall Eq. (114), PT = –NT = –KF3A/0T0. From 

this, and using Eq. (113), N = –P, ∂PT/∂t – ∂NT/∂t = –2KF3(∂A/∂t)/0T0 so FLF = KF1Q(∂PT/∂t – 

∂NT/∂t) = –(2KF3KF1Q/0T0)∂A/∂t. Now make the assignment 

0T0 = 2KF3KF1 (144) 

This allows the Lorentz force on any detached-aether due to flow forces to be expressed as: 

FLF = –Q∂A/∂t (145) 
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C.15. Tension Force Effects on the Detached-Aether 

Detached-aether will not be directly affected by tension since tension is a force associated with 

attachment. However, when detached-aether flows through the attached-aether the tension within 

the attached-aether is affected, and that leads to reaction forces on moving detached-aether. 

C.15.1. Tension Forces on the Attached-Aether when Ambient Displacements are Parallel to 

Detached-Aether Flow. Next we will evaluate the forces present on an analysis-cube of attached-

aether due to the presence of flowing detached-aether when there is a parallel, ambient, attached-

aether displacement. Without loss of generality the flow and ambient displacement (PZ) can be 

assumed to be in the z direction and the gradient of the ambient displacement (∂PAZ/∂x) can be 

assumed to be in the x direction. We start with an analysis-cube of positive-attached-aether that 

has positive-detached-aether flowing upward within it. This flow in the positive z direction leads 

to a force in the negative z direction, as found in Eq. (100) above. 

Figures 6 through 9 show the central cube from Figure 2 under various conditions relevant for our 

present analysis. Figures 6 and 7 show cutouts of the xz plane through the cube, while Figures 8 

and 9 show cutouts of the yz plane. Figures 6 and 8 show the tension forces on the cube without a 

flow (or flow force) while Figures 7 and 9 add a flow (and flow force) to the situation. From 

Figures 6 and 8 it is easily seen that the cube of aether has no net tension force upon it, since the 

tension forces are equal and opposite to each other. However, in Figures 7 and 9 the situation 

changes. The downward flow force on the cube will result in a downward displacement of the cube 

until the restoring tension forces have a z component, and the sum of such restoring tension-forces 

will be equal and opposite to the applied downward flow force. (Were the downward flow force 

greater, the cube will displace more, which would increase the restoring tension-force. Were it 

less, the opposite would occur. The equilibrium value is for the forces to balance each other out.) 



 

71 
 

However, while the total net force in the z direction will cancel out to zero, the situation will result 

in a force in the x direction, which will now be evaluated. 

 

Figure 6. Tension forces on the yz faces of an analysis-cube of positive-attached-aether in the 

presence of an ambient positive-attached-aether displacement with gradient ∂PAZ/∂x when there 

is no flowing detached-aether. 

 

Figure 7. Tension forces on the yz faces of an analysis-cube of positive-attached-aether in the 

presence of an ambient positive-attached-aether displacement with gradient ∂PAZ/∂x when there 

is positive-detached-aether flowing upward within. 
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Figure 8. Tension forces on the xz faces of an analysis-cube of positive-attached-aether in the 

presence of an ambient aetherial gradient ∂PAZ/∂x when there is no flowing detached-aether. 

 

Figure 9. Tension forces on the xz faces of an analysis-cube of positive-attached-aether in the 

presence of an ambient aetherial gradient ∂PAZ/∂x when there is upward flowing positive-

detached-aether within. 

In Figure 6 the tension-force on the left (right) points from the center of the cube shown toward 

the center of a not-shown cube to the left (right) of the one shown. (See Figure 2 for additional 

cubes.) The (not shown) cube on the left (right) will be displaced a distance –dPAZ (dPAZ) in the z 

direction, and the slope of the tension-force is dPAZ divided by the width of the cube x = X0. (We 



 

73 
 

use the subscript A to denote the ambient aetherial displacement.) Hence, in Figure 6, the tension-

force on the left face of the cube is in the direction of (–i – [∂PAZ/∂x]k). On the right side of Figure 

6 the tension-force is in the direction of (i + [∂PAZ/∂x]k). In Figure 7 there is an additional z 

component to the tension-force caused by the displacement of the cube due to the need to offset 

the flow-force. Here we define the quantity F via: 

dPF = Fx (146) 

In Eq. (146) F (for small F) is the change in angle of the tension-force due to the flow force 

displacing the analysis-cube. On the left face of the cube in Figure 7, this results in a tension-force 

in the direction (–i + [F – ∂PAZ/∂x]k) and the tension-force on the right side is in the direction of 

(i + [F + ∂PAZ/∂x]k). The tension-force direction on the front and back sides can be similarly 

found from Figure 9 as being in the direction of (j + kF) and (–j + kF), respectively. 

The tension-force on each face of the cube is the force per unit area, T0, multiplied by the area of 

the face x2. (The area of the yz face could be expressed as yz, but since this is a cube, x = 

y = z = X0, so the area is x2, as it is for all six faces.) The force will also involve a unit vector 

in the direction of the force.  

The tension-force on the left side of Figure 7 is therefore FLeft = T0x2[–i + (F – ∂PAZ/∂x)k]/[1 

+ (F – ∂PAZ/∂x)2]1/2, while the tension-force on the right side is FRight = T0x2[i + (F + 

∂PAZ/∂x)k]/[1+(F+∂PAZ/∂x)2]1/2. The tension-force on the front side is FFront = T0x2[j + 

Fk]/[1+F
2]1/2; and the tension-force on the back FBack = T0x2[–j + Fk]/[1+F

2]1/2. At this point, 

we use the approximation (1+)n ≈ 1 + n for small , note that F and ∂PAZ/∂x will both be small, 

and we will keep terms up to second order in small quantities.  The four tension-forces are then  
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FLeft ≈ T0x2[–i + (F – ∂PAZ/∂x)k + i(F – ∂PAZ/∂x)2/2]  (147) 

FRight ≈ T0x2[i + (F + ∂PAZ/∂x)k – i(F + ∂PAZ/∂x)2/2]  (148) 

FFront ≈ T0x2[j + Fk – jF
2/2] (149) 

FBack ≈ T0x2[–j + Fk + jF
2/2].  (150) 

Lastly, there is the force from the flow within the cube. Eq. (100) above, FFP = –KF3PDVUPDT 

+ KF3NDVUNDT, gives the expression for the total flow-force on the positive-attached-aether due 

to flows. Since we are only looking at positive-detached-aether flow, this becomes: 

FFlowPP = –KF3PDVUPDT = –KF3QPUk (151) 

In the second of Eqs. (151) QP = PDV and UPDT = Uk. Here we are evaluating the force on a 

uniformly moving QP within a small cube. For a uniform sphere of charge moving in the z 

direction, points within that sphere have a uniform current in the z direction, and that does indeed 

have zero divergence: the current is transverse. If however we were to consider a moving gaussian 

distribution, then the current would vary in the z direction, which would have a finite divergence. 

Dividing such a distribution into spherical shells, we can decompose each shell into a constant 

current portion and its divergent portion and UPDT = Uk results from just considering the constant 

current portion.  

Summing the five forces yields the total force on the cube: 

FLT1PP = T0x2[4Fk – 2F(∂PAZ/∂x)i] – KF3QPUk (152) 

The subscript reminds us we are evaluating the Lorentz Tension-force of type 1 for the case of 

Positive-detached-aether flowing through Positive-attached-aether. In this case, equilibrium in the 

z direction will be obtained when 4T0x2F = KF3QPU, or F = KF3QPU/4T0x2 and hence FLT1PP 
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= –T0x22F(∂PAZ/∂x)i = –i(∂PAZ/∂x)KF3QPU/2. Now recall PT = –KF3A/0T0 from Eq. (114) to 

obtain: 

FLT1PP = i(∂AAZ/∂x)KF3
2QPU/20T0. (153) 

The positive-detached-aether moves through both types of attached-aether. When we evaluate 

positive-detached-aether flowing through negative-attached-aether the relevant portion of Eq. (81) 

gives us a flow force of FFlowPN = KF3PDVUPDT, which is the negative of the flow force given 

by Eq. (151). In this case we use NT = KF3A/0T0 from Eq. (114), which is the negative what was 

used to get to Eq. (153). Since there are two sign reversals in the derivation we arrive at: 

FLT1PN = i(∂AAZ/∂x)KF3
2QPU/20T0 (154) 

C.15.2. Tension-Forces on the Detached-Aether when Ambient Displacements are Parallel 

to Detached-Aether Flow. Eqs. (153) and (154) are forces on the attached-aether due to flows of 

positive-detached-aether. In this case, the change in slope of ∂PAZ/∂x shown in Fig. 7 results in a 

force on the attached-aether which is primarily in the direction of the tension-force, FTX. (Recall 

that Fig. 7 greatly exaggerates the z-components of FT.) The force on the attached-aether can be 

eliminated if the force from Eqs. (153) and (154) is transferred to the detached-aether. (Empirical 

observation, see section C.17.) Hence, the total Lorentz Tension force of type 1 on the positive-

detached-aether, FLT1P, is the sum of Eqs. (153) and (154): 

FLT1P = i(∂AAZ/∂x)KF3
2QPU/0T0 (155) 

For the total Lorentz Tension force of type 1 on negative-detached-aether, Eqs. (78), (79), (80) and 

(81) inform us that there is simply a change in sign in the direction of the flow force. (Recall that 

we drop the terms ∂PT/∂t and ∂NT/∂t to get to Eq. (100).) Therefore the derivation involves 

replacing QP by –QN which leaves: 
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FLT1N = –i(∂AAZ/∂x)KF3
2QNU/0T0 (156) 

Defining Q = QP – QN and combining Eqs. (155) and (156) leaves: 

FLT1 = i(∂AAZ/∂x)KF3
2QU/0T0. (157) 

Now, assigning our constant KF3 as: 

KF3
2 = 0T0 (158) 

allows us to arrive at: 

FLT1 = i(∂AAZ/∂x)QU (159) 

A similar treatment to the above can be applied if the ambient, parallel, attached-aetherial 

displacements are instead assumed to vary in the y direction. This leads to: 

FLT2 = j(∂AAZ/∂y)QU (160) 

C.15.3. Tension-Forces on the Attached-Aether when Ambient Displacements are 

Perpendicular to Detached-Aether Flow.  We now continue the evaluation of the forces present 

on an analysis-cube of attached-aether due to the simultaneous presence of flowing detached-

aether as well as an ambient tension-gradient by considering ambient displacements perpendicular 

to the velocity of the detached-aether. The situation for the case of positive-attached-aether and 

flowing positive-detached-aether is shown in Figures 10 and 11. 
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Figure 10. Tension-forces on the xy faces of an analysis-cube of attached-aether in the presence 

of an ambient aetherial gradient ∂PAX/∂z for case where there is no flowing detached-aether.  

 

Figure 11. Tension-forces on the xy faces of an analysis-cube of attached-aether in the presence 

of an ambient aetherial gradient ∂PAX/∂z for case where positive-detached-aether flows in the 

positive z direction within. The flow forces the cube downward relative to its neighbors, and the 

small arrows represent the additional tension forces resulting from that displacement. 
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Figure 10 shows the tension-forces on the top and bottom faces when there is an ambient gradient 

in the attached-aether ∂PAX/∂z. When there is no flowing detached-aether within the cube (shown 

in Figure 10) the tension-forces are equal and opposite so there is no net tension-force on the cube. 

We define our cube of analysis to be centered at z = 0, x = 0. The ambient gradient ∂PAX/∂z results 

from cubes at height z being displaced to P(z) = PX(z) = i(∂PAX/∂z)z. The tension-force direction 

in Figure 10 is thus [k + (∂PAX/∂z)i]/[1+(∂PAX/∂z)2]1/2.  This direction will point to a cube, cube 2 

(not shown). Cube 2 is kz above the analysis-cube and i(∂PAX/∂z)z to the right of the analysis-

cube where z = x. (Cube 2 is centered at z = x, x = [∂PAX/∂z]x, where x = X0.) 

Now consider adding flowing positive-detached-aether into our analysis, which will displace the 

cube of analysis opposite to the direction of the flow; this will change the direction of the tension-

force as shown in Figure 11. With such a flow, cube 2 is now at (z = x + dPFZ, x = [∂PAX/∂z]x) 

where dPFZ is the amount of displacement due to the flow. (The analysis-cube moves down a 

distance dPFZ and we move the origin of our coordinate system down with it, leading to the relative 

positive displacement of cube 2.) We can now define F as we did in Eq. (146), dPFZ = Fx. 

Doing so, the tension-force is now directed toward (z = x + Fx, x = [∂PAX/∂z]x), and the 

direction of the tension-force at the top face of Figure 11 is [(1+F)k + 

(∂PAX/∂z)i]/[(1+F)2+(∂PAX/∂z)2]1/2. Similarly, the tension-force direction at the bottom face 

becomes –[(1–F)k + (∂PAX/∂z)i]/[(1–F)2+(∂PAX/∂z)2]1/2. 

The tension-force on each face of the cube is the force per unit area, T0, multiplied by the area of 

the face x2.  We can now include the forces of the other four sides, as well as the flow force, to 

obtain the total force on the cube of analysis. In this case both the xz and yz faces will have tension-

forces normal to the plane prior to any displacement. See Figure 9 and the discussion above and 
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through Eqs. (149) and (150) for the case of two of the tension-forces normal to the plane, here we 

find FFront = T0x2[j + Fk]/[1+F
2]1/2 and FBack = T0x2[–j + Fk]/[1+F

2]1/2. Similar expressions 

will pertain to the forces on the right and left cube faces, FLeft = T0x2[–i + Fk]/[1+F
2]1/2 and 

FRight = T0x2[i + Fk]/[1+F
2]1/2. We must also include the force due to the flow, given in Eq. 

(151) as FFlowPP = –KF3QPUk. Hence, the total force on the analysis-cube is: 

FLT3PP = T0x2[(1 +F)k + (∂PAX/∂z)i]/[(1 +F)2+(∂PAX/∂z)2]1/2  (161) 

– T0x2[(1–F)k + (∂PAX/∂z)i]/[(1 –F)2+(∂PAX/∂z)2]1/2 + T0x2[–i + Fk]/[1+F
2]1/2  

+ T0x2[i + Fk]/[1+F
2]1/2 + T0x2[–j + Fk]/[1+F

2]1/2 + T0x2[j + Fk]/[1+F
2]1/2 – KF3QPUk 

At this point, we use the approximation (1+)n ≈ 1 + n for small , and also note that F and 

∂PAX/∂z will both be small. This leaves us with: 

FLT3PP ≈ T0x2[(1+F)k + (∂PAX/∂z)i][1 –F –F
2/2 – (∂PAX/∂z)2/2]  (162) 

– T0x2[(1 –F)k + (∂PAX/∂z)i][1+F –F
2/2 – (∂PAX/∂z)2/2] + T0x2[–i + Fk][1–F

2/2]  

+ T0x2[i + Fk][1–F
2/2] + T0x2[–j + Fk][1–F

2/2] + T0x2[j + Fk][1–F
2/2] – KF3QPUk 

Now, keep terms to second order: 

FLT3PP = T0x2{k[1 – F – F
2/2 – (∂PAX/∂z)2/2] + kF – kF

2 + (∂PAX/∂z)i – (∂PAX/∂z)Fi} 

– T0x2{k[1+ F – F
2/2 – (∂PAX/∂z)2/2] – kF – kF

2 + (∂PAX/∂z)i + (∂PAX/∂z)Fi} 

– T0x2i[1–F
2/2] + T0x2Fk + T0x2i[1–F

2/2] + T0x2Fk (163) 

– T0x2j[1–F
2/2] + T0x2Fk + T0x2j[1–F

2/2] + T0x2Fk – KF3QPUk 

Cancelling terms that are equal and opposite (red and orange), and combining remaining like terms 

(blue and green) leaves: 

FLT3PP = –2T0x2(∂PAX/∂z)Fi + 4T0x2Fk – KF3QPUk (164) 
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Equilibrium in the z direction will be obtained by 4T0x2F = KF3QPU, or F = KF3QPU/4T0x2 

and hence FLT3PP = –2T0x2(∂PAX/∂z)Fi = –i(∂PAX/∂z)KF3QPU/2. Now recall PT = –KF3A/0T0 

from Eq. (114) to obtain FLT3PP = i(∂AAX/∂z)KF3
2QPU/20T0, and recall Eq. (158), KF3

2 = 0T0, 

to arrive at 

FLT3PP = i(∂AAX/∂z)QPU/2 (165) 

Next, note that if we evaluate positive-detached-aether flowing through negative-attached-aether 

the relevant portion of Eqs. (79) and (81) gives us a flow force of FFN = KF3PDVUPDT, which is 

the negative of the flow force given by Eq. (151). In this case we use NT = KF3A/0T0 from Eq. 

(114), which is the negative what was used to get to Eq. (165). Since there are two sign reversals 

in the derivation we arrive at: 

FLT3PN = i(∂AAX/∂z)QPU/2 (166) 

C.15.4. Tension Forces on the Detached-Aether when Ambient Displacements are 

Perpendicular to Detached-Aether Flow. Eqs. (165) and (166) are forces on the attached-aether 

due to flows of positive-detached-aether. In this case, similar to what is described near Eq. (139), 

the detached-aether will be forced to move in the opposite direction. (Empirical observation, see 

section C.17.) Hence, the total Lorentz Tension force of type 3 on the positive-detached-aether is: 

FLT3P = –i(∂AAX/∂z)QPU (167) 

For the total Lorentz Tension force of type 3 on the negative-detached-aether, Eqs. (78), (79), (80) 

and (81) inform us that there is simply a change in sign in the direction of the flow force. (Recall 

that we drop the terms ∂PT/∂t and ∂NT/∂t to get to Eq. (100).) Therefore the derivation involves 

replacing QP by –QN which leaves: 

FLT3N = i(∂AAX/∂z)QNU (168) 
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Again using the definition Q = QP – QN leaves: 

FLT3 = –i(∂AAX/∂z)QU (169) 

It is also possible that ∂AAY/∂z is non-zero, with a similar derivation to above leading to: 

FLT4 = –j(∂AAY/∂z)QU (170) 

C.15.5. The General Expression for the Tension-Force on the Detached-Aether due to 

Flowing-Detached-Aether. Above, the forces FLT1, from Eq. (159), FLT2, from Eq. (160), FLT3, 

from Eq. (169), and FLT4, from Eq. (170) are derived under the assumption that the velocity U is 

in the z direction, so we replace U by UZ and the total force is the sum of these four forces, or: 

FLT5 = i(∂AAZ/∂x)QUZ + j(∂AAZ/∂y)QUZ – i(∂AAX/∂z)QUZ – j(∂AAY/∂z)QUZ  (171) 

However, the velocity may not be in the z direction. With a velocity in the x direction, U = UX, we 

just make the substitutions z to x, x to y, y to z, i to j, j to k, and k to i, in the analysis to obtain the 

expression for U = UX. Then do the same again for the expression for U = UY. 

FLT6 = j(∂AAX/∂y)QUX + k(∂AAX/∂z)QUX – j(∂AAY/∂x)QUX – k(∂AAZ/∂x)QUX  (172) 

FLT7 = k(∂AAY/∂z)QUY + i(∂AAY/∂x)QUY – k(∂AAZ/∂y)QUY – i(∂AAX/∂y)QUY  (173) 

The total Lorentz force on moving detached-aether due to the tension is: 

FLT = FLT5 + FLT6 + FLT7 =  (174) 

+ i(∂AAZ/∂x)QUZ + j(∂AAZ/∂y)QUZ – i(∂AAX/∂z)QUZ – j(∂AAY/∂z)QUZ 

+ j(∂AAX/∂y)QUX + k(∂AAX/∂z)QUX – j(∂AAY/∂x)QUX – k(∂AAZ/∂x)QUX 

+ k(∂AAY/∂z)QUY + i(∂AAY/∂x)QUY – k(∂AAZ/∂y)QUY – i(∂AAX/∂y)QUY 
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C.16. The Lorentz Force Equation 

The total force on a volume of detached-aether, Q, is the force given by Eq. (142) from the energy 

effects due to displacement, plus the flow-force given by Eq. (145) plus the force due to tension 

effects given by Eq. (174): 

FL = FLD + FLF + FLT = –Q∇ – Q∂A/∂t (175) 

+ i(∂AAZ/∂x)QUZ + j(∂AAZ/∂y)QUZ – i(∂AAX/∂z)QUZ – j(∂AAY/∂z)QUZ 

+ j(∂AAX/∂y)QUX + k(∂AAX/∂z)QUX – j(∂AAY/∂x)QUX – k(∂AAZ/∂x)QUX 

+ k(∂AAY/∂z)QUY + i(∂AAY/∂x)QUY – k(∂AAZ/∂y)QUY – i(∂AAX/∂y)QUY 

Now form ∇xA = [i∂/∂x + j∂/∂y + k∂/∂z]x[iAAX + jAAY + kAAZ] = k∂AAY/∂x – j∂AAZ/∂x 

– k∂AAX/∂y + i∂AAZ/∂y + j∂AAX/∂z – i∂AAY/∂z, and then form Ux ∇xA = UX(–j∂AAY/∂x  – 

k∂AAZ/∂x + j∂AAX/∂y + k∂AAX/∂z) + UY(i∂AAY/∂x – i∂AAX/∂y – k∂AAZ/∂y + k∂AAY/∂z) + 

UZ(i∂AAZ/∂x + j∂AAZ/∂y – i∂AAX/∂z – j∂AAY/∂z), which allows Eq. (175) to become: 

FL = FLD + FLF + FLT = –Q∇ – Q∂A/∂t + QUx ∇xA (176) 

Substituting in Eq. (123), E = –∇– ∂A/∂t, and Eq. (124), B = ∇xA, this leaves: 

FL = Q(E + UxB) (177) 

Eq. (177) is recognized as the Lorentz Force Equation. 

 

C.17. Comments on Electromagnetism 

C.17.1. Issues for Further Study. In section C.15.2, leading to Eq. (155), we assumed that the 

force on the detached-aether will be in the same direction as the force on the attached-aether, while 

in section C.15.4, leading to Eq. (167), we assumed the force on the detached-aether will be in the 
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opposite direction as the force on the attached-aether. For the Coulomb force, described in section 

C.13, we saw that energy considerations led to the force on the detached-aether being in the 

opposite direction as the force on the attached-aether. For the analysis in sections C.15.2 and 

C.15.4 there is no energy consideration to aid nature in making the choice, and so either choice is 

possible, but it is curious why the choice made in section C.15.2 differs from that made in sections 

C.15.4 and C.13. This curiosity is a matter for future consideration and research; there should be 

a physical cause for the difference. 

In section C.14 we assumed that only the reaction force from the direct forces of Eqs. (78) and 

(79) act on the detached-aether, and that there will be no reaction force from the indirect forces of 

Eqs. (80) and (81) upon the detached-aether. However in sections C.6 and C.15 both the direct and 

indirect forces are seen to act upon the attached-aether. This assumed behavior is an additional 

curiosity and another matter for future consideration and research.  

Despite their curious nature, we have proceeded with these empirical choices, as it is with those 

choices that we have arrived at Maxwell’s Equations and the Lorentz force equation. These choices 

are a topic for further study, and we will not speculate further on them in this work. 

C.17.2. Summary Comments. Together, Maxwell’s Equations and the Lorentz Force Equation 

are a set of equations with considerable complexity. In this section C, we have seen how that 

complexity arises from several underlying simple physical causes. The quantum-pressure, internal 

tension, delta field and a flow law are all quite simple on their own. And yet, when properly 

analyzed, we see how those simple attributes of the aether lead quite straight forwardly to the 

complexities of Maxwell’s Equations and the Lorentz Force Equation. 

We have also discovered the fundamental nature of the longitudinal and transverse separations 

inherent in aetherial interactions. We have seen that the physics of the aether results in a derivation 
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of Maxwell’s equations in terms of potentials in the Coulomb, or instantaneous, gauge. Hence, the 

physics is that of longitudinal solutions described by Poisson’s Equation, which is instantly 

transmitted as the sources move, plus transverse solutions which are described by the results of a 

straightforward analysis based on F = ma. (Of course, the longitudinal solutions may not be fully 

instantaneous and there may be a finite velocity of transmission. At the time of this writing 

however the equations of electrodynamics are consistent with instantaneity. This matter of 

instantaneous solutions described by Poisson’s Equation is another matter for future research.) 

 

Part D. Gravitation. 

In this section the aether will be analyzed in the absence of electromagnetic effects. 

(Electromagnetic effects are analyzed in section C above.) 

 

D.1 – Attached-Aether Density Change Due to Mass 

We will define E, the extrinsic-energy-density for massive bodies, as 

E = Mc2/V (178) 

In Eq. (178) M is the mass in a small volume V and  = (1 – v2/c2)–1/2, where v is the velocity of 

the mass and c the speed of light, and all quantities are measured with respect to the rest frame of 

the aether. We now propose: 

The Extrinsic-Energy Force-Reduction Law. The presence of extrinsic-energy decreases the 

positive (negative) attached-aether tension and the negative (positive) attached-aether quantum-

force by an amount proportional to the amount of extrinsic-energy present with a constant of 

proportionality KG1 (KG2). 
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With XQ the size of the analysis-cube, the Extrinsic-Energy Force-Reduction Law can be expressed 

mathematically for the nominal analysis-cube as 

FTP = KTPXQ = KT0(1– KG1E)XQ (179) 

FTN = KTNXQ = KT0(1– KG2E)XQ (180) 

FQP = 2KQP/XQ
3 = 2KQ0(1– KG2E)/XQ

3 (181) 

FQN = 2KQN/XQ
3 = 2KQ0(1– KG1E)/XQ

3 (182) 

From Eqs. (179) to (182) the force parameters are: 

KTP = KT0(1– KG1E) (183) 

KTN = KT0(1– KG2E) (184) 

KQP = KQ0(1– KG2E) (185) 

KQN = KQ0(1– KG1E) (186) 

The energy formulas, Eqs. (27) and 29), become 

ETP = (1/2)KT0(1 – KG1E)XQ
2 (187) 

ETN = (1/2)KT0(1 – KG2E)XQ
2 (188) 

EQP = KQ0(1 – KG2E)/XQ
2 (189) 

EQN = KQ0(1 – KG1E)/XQ
2 (190) 

Consider first the undisturbed, positive analysis-cube. The total cube energy is EP = ETP + EQP = 

(1/2)KT0(1 – KG1E)XQ
2 + KQ0(1 – KG2E)/XQ

2, the extremum of which can be found by setting  

(dEP/dXQ)1 = KT0(1 – KG1E)XQ – 2KQ0(1 – KG2E)/XQ
3 = 0 (191) 

We see that KT0(1 – KG1E)XQ = 2KQ0(1 – KG2E)/XQ
3 at the extremum. Defining X1 as the value 

obtained at the extremum, X1
4 = 2KQ0(1 – KG2E)/KT0(1 – KG1E). With KG1E << 1 and KG2E << 

1, this becomes X1
4 ≈ (2KQ0/KT0)(1 – KG2E + KG1E). Recalling Eq. (23), X0 = (2KQ0/KT0)1/4, 
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X1 ≈ X0(1 + [KG1–KG2]E/4) (192) 

To see whether the extremum is a minimum or a maximum, the second derivative of EP is 

evaluated: (d2EP/dXQ
2)X1 = [KT0(1 – KG1E) + 6KQ0(1 – KG2E)/XQ

4]X1 = KT0(1 – KG1E) + 6KQ0(1 

– KG2E)/[2KQ0(1 – KG2E)/KT0(1– KG1E)] = KT0(1 – KG1E) + 3KT0(1 – KG1E) = 4KT0(1 – KG1E) 

which is manifestly positive, indicating an energy minimum, showing that X1 will be the 

equilibrium analysis-cube size. The density is proportional to the inverse of the volume, or PA/0 

= (X0/X1)3, or PA/0 = (1 + [KG1–KG2]E/4)–3 ≈ (1 – 3[KG1–KG2]E/4). We now define 

G = 3[KG1–KG2]E0/2 (193) 

leaving 

PA = 0 – G/2  (194) 

Next consider the negative analysis-cube. The total energy is the sum EN = ETN + EQN = (1/2)KT0(1 

– KG2E)XQ
2 + KQ0(1 – KG1E)/XQ

2, the extremum of which can be found by setting  

(dEN/dXQ)2 = KT0(1 – KG2E)XQ – 2KQ0(1 – KG1E)/XQ
3 = 0 (195) 

We see that KT0(1 – KG2E)XQ = 2KQ0(1 – KG1E)/XQ
3 at the extremum. Defining X2 as the value 

obtained at the extremum, X2
4 = 2KQ0(1 – KG1E)/KT0(1 – KG2E). With KG1E << 1 and KG2E << 

1, this becomes X2
4 = (2KQ0/KT0)(1 – KG1E + KG2E). Recalling Eq. (23), X0 = (2KQ0/KT0)1/4, 

X2 ≈ X0(1 + [KG2–KG1]E/4) (196) 

To see whether the extremum is a minimum or a maximum, the second derivative of EN is 

evaluated: (d2EN/dXQ
2)X2 = [KT0(1 – KG2E) + 6KQ0(1 – KG1E)/XQ

4]X2 = KT0(1 – KG2E) + 6KQ0(1 

– KG1E)/[2KQ0(1 – KG1E)/KT0(1 – KG2E)] = KT0(1 – KG2E) + 3KT0(1 – KG2E) = 4KT0(1 – 

KG2E) which is manifestly positive, indicating an energy minimum, showing that X2 will be the 

equilibrium analysis-cube size. The density is proportional to the inverse of the volume, or NA/0 
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= (X0/X2)3, which is NA/0 = (1 + [KG2–KG1]E/4)–3 ≈ (1 – 3[KG2–KG1]E/4). Using Eq. (193), G 

= 3[KG1–KG2]E0/2, leaves 

NA = 0 + G/2  (197) 

Recall the density postulate from section A.4.3:  

The Density Postulate. In any volume, the density of the positive-aether equals the density of the 

negative-aether minus an amount proportional to the extrinsic-energy within the volume. 

Since here we have no detached-aether, N = NA and P = PA and we obtain P – N = –G, or P 

= N – G, and since Eq. (193) shows that G is proportional to E, we see immediately that Eqs. 

(194) and (197) are a mathematical representation of the density postulate for the case where no 

detached-aether is present. 

D.2 – Attached-Aether Displacements Due to Mass 

 

Figure 12. Analysis-cube of undistorted aether (left). Analysis-cube of expanded aether showing 

the original cube within (right). 

Figure 12 shows two analysis-cubes of positive-aether. On the left is an undistorted cube of 

positive-attached-aether, which is Δx wide by Δy high by Δz deep. In the undistorted state, the 

density of the positive-attached-aether, PA, is equal to the nominal density, 0. The density of 
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anything is the amount of it divided by the volume it occupies. Hence, on the cube on the left, the 

amount of positive-attached-aether within the volume is 0ΔxΔyΔz. 

If an amount of extrinsic-energy is added to the cube on the left (often the extrinsic-energy is mass) 

the density of the attached-positive-aether will decrease as given by Eq. (194), PA = 0 – G/2, 

where G = 3[KG1–KG2]E0/2 is given in Eq. (193). In order for the density of any substance to 

decrease, the volume containing the substance must of course increase. The required expanded 

volume is shown on the right side of Fig. 12. In that second cube, the width is increased by an 

amount δx, while the height and depth are changed by δy and δz, respectively. The amount of 

positive-attached-aether remains 0(xyz), but with the larger volume the positive-attached-

aether density is now: 

PA = 0(xyz)/[(x + x)(y + y)(z + z)]  

≈ 0(xyz)/(xyz + xyz + yxz + zxy) 

= 0/(1 + x/x + y/y + z/z) ≈ 0(1 – x/x – y/y – z/z) (198) 

It is assumed that the nominal density of the positive-attached-aether is far greater than the density 

change G, and so the  quantities are very much smaller than the  quantities in Eq. (198). This 

allows the approximations made in Eq. (198).  

To further refine Eq. (198), recall that the vector PG is the displacement of the positive-attached-

aether with respect to its equilibrium position. Hence, the x component of PG at x is the 

displacement of the center of the cube shown in Fig. 12, and the x component of PG at x+Δx/2 is 

the displacement of the right yz face of that cube. Therefore x/2 = PGX(x + x/2, y, z, t) – PGX(x, 

y, z, t). Dividing each side by x/2 leaves x/x = [PGX(x + x/2, y, z, t) – PGX(x, y, z, t)]/x/2 ≈ 

∂PGX/∂x. Repeating the derivation for y and z will lead to similar expressions. Hence, Eq. (198) 
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can be re-expressed as PA ≈ 0(1 – x/x – y/y – z/z) ≈ 0(1–∂PGX/∂x–∂PGY/∂y–∂PGZ/∂z), 

which results in 

PA ≈ 0(1 – ∇ . PG) (199) 

Eq. (199) can be manipulated by bringing 0∇ . PG to the left-hand side, bringing –AP to the right-

hand side, dividing through by 0, and then utilizing Eq. (194) from above: 

∇ . PG ≈ (0 – PA)/0 = G/20 (200) 

We can decompose PG into its longitudinal (PGL) and transverse (PGT) components, where PGL is 

defined as having zero curl and PGT is defined as having zero divergence. (∇ x PGL = 0 and ∇ . PGT 

= 0.) Since the longitudinal component of the vector field has zero curl it can be expressed as the 

gradient operator applied to a scalar field: 

PGL = ∇GP (201) 

ΨGP is just a function that has a single scalar value at every point in space and time. 

Since the divergence of the transverse component of PG is zero, the divergence of PG is equal to 

the divergence of its longitudinal portion alone, ∇ . PG = ∇ . PGL. And now, with PGL = ∇GP: 

∇ . PG = ∇ . PGL = ∇ . ∇GP = ∇2GP (202) 

Next, combine Eqs. (200) and (202) to yield: 

∇2GP = ∇ . PGL = ∇ . PG = G/20 (203) 

A similar derivation can be applied to the negative-attached-aether. Simply replace PG by NG and, 

since Eq. (197) shows that G enters with the opposite sign for that case, the derivation arrives at: 

NGL = ∇GN (204) 

and 
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∇2GN = ∇ . NGL = ∇ . NG = –G/20 (205) 

Subtract Eq. (204) from Eq. (201): 

PGL – NGL = ∇GP – ∇GN (206) 

Subtract Eq. (205) from Eq. (203): 

∇2(GP – GN) = G/0 (207) 

Now define G by G = –(GP – GN)0/0, where 0 is the permittivity of free space. This results 

in Eq. (207) becoming Poisson’s Equation: 

∇2G = –G/0 (208) 

With this definition for G we also use Eq. (206) to get:  

PGL – NGL = ∇(GP – GN) = –0∇G/0 (209) 

Dimensional analysis. From Eq. (209) 0∇G/0 is a length. 0 is in m-3kg-1s4A2, 0 is in A s m-3 

and ∇ is in m-1. Hence G is in m2 kg s-3 A-1 = kg m2/s2 C = J/C, or Volts. 

It is useful to observe that by comparing Eqs. (203) and (205): 

∇ . NGL = –∇ . PGL (210) 

Eq. (210) shows that the divergence of NGL is equal to the negative of the divergence of PGL. At 

this point it is relevant to recall the physics of the situation. Referring back to Fig. 12 and the 

analysis that is used to derive the equations above, we see that the presence of extrinsic-energy 

within a cube of positive-attached-aether pushes the boundary of the cube outward. Since the 

situation is symmetric, the effect will be the same in each dimension. That same extrinsic-energy 

within a cube of negative-attached-aether also pulls the boundary of the negative-attached-aether 

cube inward. Since extrinsic-energy is the only physical cause for PGL and NGL: 

NGL = –PGL (211) 
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D.3 – The Extrinsic-Energy-Immersion Force (The Gamma-Force) 

D.3.1. A Spherical Positive-Attached-Aether Region Containing Extrinsic-Energy. Consider 

now the injection of extrinsic-energy into a spherical region of the positive-attached-aether. With 

Eq. (203), ∇ . PG = G/20, we arrive at the solutions 

PGIN = (G/60)(xi + yj + zk) = (G/60)r (r < R0) (212) 

PGOUT = P0R0
2r̂/r2 = (G/60)R0

3r̂/r2 (r > R0) (213) 

In Eqs. (212) and (213) R0 is the radius of our spherical region and P0 = (G/60)R0 is the magnitude 

of PG at R0. Verifying Eqs. (212) and (213) are solutions to Eq. (203): ∇ . PGIN = 

(1/r2)∂(r2[(G/60)r])/∂r = (1/r2)∂(G/60)r3)/∂r = G/20 and ∇ . PGOUT = (1/r2)∂(r2[P0R0
2/r2])/∂r = 

(1/r2)(∂P0R0
2/∂r) = 0.  

D.3.2. The Tension-Force Inside a Spherical Positive-Attached-Aether Region Containing 

Extrinsic-Energy. Eq. (212) informs us that adding extrinsic-energy into a spherical region will 

cause the positive-attached-aether cubes within that region to expand equally in each direction, 

which will cause cubes not at the center to also displace. As we slowly add extrinsic-energy into 

our spherical region, the displacement of any cube within that region will do work against the 

tension, with the work given by Eq. (32), WTD = (X0/0) Kc ∫ KTX0 dx, where the work will be 

positive as the motion is against the force. 

We now define e as the instantaneous energy density. As we add extrinsic-energy to the sphere, 

e will grow from 0 to its final value E, with the final value obtained once all extrinsic-energy is 

added. We see from Eq. (212) that the expansion of the cube, and therefore any displacement of 
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the cube, is linearly proportional to G, and we see from Eq. (193) that G is linearly proportional 

to E, and hence the expansion and any displacement will be linearly proportional to E. 

Consider now a cube-J, where prior to injection of extrinsic-energy, the center of cube-J is 

separated from the center of the spherical region by (J–1)X0. The energy to displace cube-J is given 

by Eq. (32), and the displacement is (J–1)X. (A displacement of X/2 comes from each of cube-

1 and cube-J and an additional X comes from each of the cubes between cube-1 and cube-J.) As 

a first order approximation FT = KT0X0. Integrating Eq. (32), WTD = (X0/0) Kc ∫ KTX0 dx, from 0 

to (J–1)X, the work done against the tension on cube-J from the displacement is WTD = 

KcKT0X0
2(J–1)X/0. 

Setting the expansion effects aside, the tension-energy of cube-J is ET = ET0 + WTD = (1/2)KT0X0
2 

+ KcKT0X0
2(J–1)X/0. With ET = (1/2)KTX0

2, we arrive at the expression KT = KT0(1 + 2Kc(J–

1)X/0). The tension-force remains FT = KTX0, but now KT includes the next order correction.  

At the beginning of the extrinsic-energy injection (when no immersion has yet occurred) FT is of 

course just KT0X0, and it is at the end of immersion that FT_END = KT0X0[1 + 2Kc(J–1)X/0]. 

Defining x as the distance the cube moves due to extrinsic-energy immersion, we again arrive at 

Eq. (66), FTPP = KT0X0[1 + 2Kcx/0]. To verify Eq. (66), when there is no injection x = 0 and FT = 

KT0X0; when the injection is complete, x = (J–1)X and FT = FT_END = KT0X0[1 + 2Kc(J–1)X/0]. 

The linearity in x follows because X (and hence (J–1)X) is linear with the amount of extrinsic-

energy injected.  

With the second order expression for the tension just derived for the displacement case, we can 

now include the second order effect in the cube tension-energy. The work done on the field due to 

the cube displacement again makes use of Eq. (32), WTD = (X0/0) Kc ∫ KTX0 dx, WTDJ = 
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(X0/0)KcKT0X0 ∫ [1 + 2Kcx/0] dx = KcKT0X0
2x/0 + (X0/0)2Kc

2KT0x2 = KcKT0X0
2(J–1)X/0 + 

(X0/0)2Kc
2KT0(J–1)2X2 = KcKT0X0

2PG/0 + (X0/0)2Kc
2KT0PG

2. 

For the displacement, the integral is evaluated between zero and its final displacement PG = (J–

1)X. The work done has a positive sign because the tension increases in this case. 

The expansion energy is now calculated using Eq. (63), WTC = 2 ∫ KTX0 dw. From Eq. (66), KTX0 

= KT0X0[1 + 2Kcx/0]. We now use Eq. (62) with PG for P, x = (PGX)w, and we obtain KTX0 = 

KT0X0[1+2Kc(PG/X)w/0]. As specified in Eq. (63) we integrate from w = 0 to w = X/2. Hence 

WTC1 = 2 ∫ KTX0 dw = 2KT0X0 ∫ [1+2Kc(PG/X)w/0] dw = 2KT0X0w + 2KT0X0Kc(PG/X)w2/0 = 

KT0X0X + KT0X0KcPGX/20. Recall that Eq. (63) is for one dimension only, and that inside the 

sphere the expansion will be the same in all three dimensions. Hence, WTC3 = 3KT0X0X + 

3KT0X0KcPGX/20. The total tension-energy of an arbitrary analysis-cube inside the spherical 

region is the undisturbed energy plus the displacement energy plus the expansion energy, ETPGI = 

(1/2)KT0X0
2 + KcKT0X0(X0/0)PG + Kc

2KT0(X0/0)2PG
2 + 3KT0X0X + 3KT0X0KcPGX/20, or, 

ETPGI = KT0X0
2[(1/2) + KcPG/0 + Kc

2(PG/0)2 + 3X/X0 + 3KcPGX/2X00]. Here we have derived 

the force for positive PG. For PG of any angle the work done is the same, due to radial symmetry. 

Hence we will replace PG by its absolute value, |PG|: 

ETPGI = KT0X0
2[(1/2) + Kc|PG|/0 + Kc

2(|PG|/0)2 + 3X/X0 + 3Kc|PG|X/2X00] (214) 

In Eq. (214) and the above paragraph, the subscript TPGI refers to the Tension-energy of the 

Positive-attached-aether including the Gravitational effects of extrinsic-energy in the region Inside 

the sphere. 
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D.3.3. The Quantum-Force Inside a Spherical Positive-Attached-Aether Region Containing 

Extrinsic-Energy. Eq. (33) relates that the displacement of any cube within the sphere does work 

against the quantum-force-field of WQD = (X0/0)Kc ∫ 2KQ/X0
3

 dx. Before adding any extrinsic-

energy to our sphere, FQP = 2KQ0/X0
3 is the quantum-force within the analysis-cubes in their 

nominal state. 

Consider again cube-J of the previous section, where J is an integer with the center of cube-J 

separated from the center of the extrinsic-energy-sphere by (J–1)X0. The energy to displace cube-

J is given by Eq. (33), and the displacement is (J–1)X. (A displacement of X/2 comes from each 

of cube-1 and cube-J and an additional X comes from each of the cubes between cube-1 and cube-

J.) To first order, FQP remains 2KQ0/X0
3. Integrating Eq. (33) from 0 to (J–1)X, the quantum-force 

displacement-work is WQD = –[2KcKQ0/X0
20](J–1)X. Here, the negative sign is applied to the 

work because we are expanding the sphere, and the displacement leads to a work that reduces the 

quantum-energy. 

Setting the expansion effects aside, the quantum-energy of cube-J is EQ = EQ0 + WDQ = KQ0/X0
2 – 

[2KcKQ0/X0
20](J–1)X = KQ0/X0

2[1 – 2Kc(J–1)X/0]. With EQ = KQ/X0
2, we arrive at the 

expression KQ = KQ0[1 – 2Kc(J–1)X/0]. The quantum-force remains FQ = 2KQ/X0
3, but now KQ 

includes the next order correction. 

At the beginning of the extrinsic-energy motion (when no immersion has yet occurred) FQ is of 

course just 2KQ0/X0
3, and it is at the end of immersion that FQP_END = (2KQ0/X0

3)[1 – 2Kc(J–

1)X/0]. With x again a variable that goes from 0 at no injection to (J–1)X at full injection, we 

see that Eq. (68) is again obtained, FQPP = (2KQ0/X0
3)[1 – 2Kcx/0], and KQ = KQ0[1 – 2Kcx/0]. 

To verify Eq. (68), when there is no injection, FQP = (2KQ0/X0
3). When the injection is complete, 
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x = (J–1)X and FQP = FQP_END. The linearity in x follows because X (and hence (J–1)X) is linear 

with the amount of extrinsic-energy injected. 

With the second order expression for the quantum-force just derived, we can now include the 

second order effect in the cube quantum-energy. The work done on the field due to the cube 

displacement is from Eq. (33), WQD = (X0/0) Kc ∫ 2KQ/X0
3

 dx = – (2KcKQ0/X0
20) ∫ [1 – 2Kcx/0] 

dx = –(2KcKQ0/X0
20)x + (2Kc

2KQ0/X0
20

2)x2 = –(2KcKQ0/X0
20)(J–1)X + (2Kc

2KQ0/X0
20

2)(J–

1)2X2 = –(2KcKQ0/X0
20)PG + (2Kc

2KQ0/X0
20

2)PG
2. For the displacement, the integral is 

evaluated between zero and its final displacement PG = (J–1)X. The leading negative sign is 

because the work decreases the quantum-force in this case.  

The expansion energy is now calculated using Eq. (64), WQC = –4 ∫ KQ/X0
3 dw, where a leading 

minus sign is included since quantum-energy is reduced by the expansion. From Eq. (68), FQPP = 

(2KQ0/X0
3)[1 – 2Kcx/0]. We again use Eq. (62) with PG for P, x = (PGX)w, and we obtain 

2KQ/X0
3 = (2KQ0/X0

3)[1–2Kc(PG/X)w/0]. As specified in Eq. (64) we integrate from w = 0 to w 

= X/2. Hence WQX1 = –4 ∫ KQ/X0
3 dw = –4KQ0/X0

3 ∫ [1–2Kc(PG/X)w/0] dw = –(4KQ0/X0
3)w + 

(4KQ0/X0
3)Kc(PG/X)w2/0 = –(2KQ0/X0

3)X + (KQ0/X0
3)KcPGX/0. Recall that Eq. (64) is for one 

dimension only, and that inside the sphere the expansion will be the same in all three dimensions. 

Hence, WTC3 = –(6KQ0/X0
3)X + (3KQ0/X0

3)KcPGX/0. The total quantum-energy of an arbitrary 

analysis-cube inside the spherical region is the undisturbed energy plus the displacement energy 

plus the expansion energy, EQPGI = KQ0/X0
2 – (2KcKQ0/X0

20)PG + (2KQ0Kc
2/X0

20
2)PG

2 –

(6KQ0/X0
3)X + (3KQ0/X0

3)KcPGX/0, or, EQPGI = (2KQ0/X0
2)[(1/2) – KcPG/0 + Kc

2PG
2/0

2 – 

3X/X0 + 3KcPGX/2X00]. Here we have derived the force for positive PG. For PG at any angle 

the work is the same. Hence we will replace PG by its absolute value, |PG|: 
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EQPGI = (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2|PG|2/0
2 – 3X/X0 + 3Kc|PG|X/2X00] (215) 

In Eq. (215) and the above paragraph, the subscript QPGI refers to the Quantum-energy of the 

Positive-attached-aether due to the Gravitational effects of extrinsic-energy in the region Inside of 

the sphere. 

D.3.4. The Gamma-Force and Gamma-Energy Fields Inside a Spherical Positive-Attached-

Aether Region Containing Extrinsic-Energy. Injection of extrinsic-energy causes positive-

attached-aether to expand leading to the forces described in Eqs. (66) and (68), FTPP = KT0X0[1 + 

2Kcx/0] and FQPP = (2KQ0/X0
3)[1 – 2Kcx/0], respectively. In order to achieve a force balance 

within the attached-aether, we propose a balancing force called the gamma-force: 

F = –FTL – FQ  (216) 

At this point recall that the tension FTL is directed inward (toward the center of the sphere) while 

the quantum-force FQ is directed outward, and with F directed oppositely we arrive at FPI = 

KT0X0[1 + 2Kcx/0]r̂ – (2KQ0/X0
3)[1 – 2Kcx/0]r̂. And now recall Eq. (21), KT0X0 = 2KQ0/X0

3, 

leaving FPI = KT0X0[1 + 2Kcx/0 – 1 + 2Kcx/0]r̂, or 

FPI = 4KcKT0(X0/0)xr̂ (217) 

Eq. (217) informs us of the total gamma-force needed to balance the difference between the tension 

and quantum forces, but it does not tell us how that balancing force arises. There are three 

possibilities for the gamma-force: 1) it could be a tension; 2) it could be a quantum-force; or 3) it 

could have components of both a tension and a quantum-force. Since the tension exceeds the 

quantum-force for the positive-attached-aether case (the sphere is expanded) the gamma-force 

could be a negative tension, a positive quantum-force or some combination of gamma-tension and 

gamma-quantum-force summing to the net force field given in Eq. (217). We propose the 

following choice: 
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FPT = 4Kc(1+ KGC)KT0(X0/0)xr̂ (218) 

FPQ = –4KcKGCKT0(X0/0)xr̂ (219) 

It can be seen that Eq. (218) is a negative tension-force, as it is directed outward, while Eq. (219) 

is a negative quantum-force, as it is directed inward. In Eqs. (218) and (219), KGC is a coupling 

constant and the equations reveal a coupling between the gamma-force components. The work 

done on the gamma-fields due to the cube displacement is calculated as  

WPDI = (X0/0) Kc ∫ F dx (220) 

Notice that the factors (X0/0) and Kc in Eq. (220) are motivated by the same physics as that found 

in Eqs. (32) and (33), as they result from the depth of the analysis-cube and a reduction factor. 

(See section B.5.) Substituting Eqs. (218) and (219) into Eq. (220) and integrating (and assuming 

both components lead to negative energy as described below in section D.3.5) we obtain WPDT = 

–2Kc
2(1 + KGC)KT0(X0/0)2(J–1)2X2 = –2Kc

2(1 + KGC)KT0(X0/0)2PG
2 and WPDQ = –

2Kc
2KGCKT0(X0/0)2(J–1)2X2 = –2Kc

2KGCKT0(X0/0)2PG
2. Summing, WPD = WPDT + WPDQ or, 

WPD = –2Kc
2(1 + 2KGC)KT0(X0/0)2PG

2 (221) 

(For the displacement, the integrals are evaluated between zero and PG = (J–1)X.) 

The expansion energy is now calculated using Eq. (63), WTC = 2 ∫ FT dw. (Eqs. (218) and (219) 

each have the functional form of a tension, F=kx.) From Eq. (218), FPT = 4Kc(1+ KGC)KT0(X0/0)x. 

We now use Eq. (62) with PG for P, x = (PGX)w, and for the tension component of the gamma-

force we have FPT = 4Kc(1+ KGC)KT0(X0/0)(PGX)w. As specified in Eq. (63) we integrate from 

w = 0 to w = X/2. Hence WPCT1 = 2 ∫ 4Kc(1+KGC)KT0(X0/0)(PGX)w dw = 

4Kc(1+KGC)KT0(X0/0)(PGX)w2 = Kc(1+KGC)KT0(X0/0)PGX. Recall that Eq. (63) is for one 
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dimension only, and that inside the sphere the expansion will be the same in all three dimensions: 

WPCT3 = 3Kc(1+KGC)KT0(X0/0)PGX (222) 

(Here the subscripts PCT3 are for the Compression energy from the Tension component of the  

force for the Positive aether inside the sphere for the full 3-dimensional analysis. Other subscripts 

in this section are similarly defined.) 

For the quantum-pressure component of the gamma-force Eq. (219) gives us FPQ = –

4KcKGCKT0(X0/0)x, and for the expansion energy we again use x = (PGX)w to get FPQ = –

4KcKGCKT0(X0/0)(PGX)w. As specified in Eq. (63) we integrate from w = 0 to w = X/2. Hence 

WPCQ1 = –2 ∫ 4KcKGCKT0(X0/0)(PGX)w dw = –4KcKGCKT0(X0/0)(PGX)w2 = –

KcKGCKT0(X0/0)PGX. Recall that Eq. (63) is for one dimension only, and that inside the sphere 

the expansion will be the same in all three dimensions:  

WPCQ3 = –3KcKGCKT0(X0/0)PGX (223) 

The total gamma-energy of an arbitrary analysis-cube inside the spherical region is the sum of the 

displacement and expansion energies found in Eqs. (221), (222) and (223), EPGI = –2Kc
2(1 + 

2KGC)KT0(X0/0)2PG
2 + 3Kc(1+KGC)KT0(X0/0)PGX – 3KcKGCKT0(X0/0)PGX = –

2Kc
2KT0(X0/0)2PG

2 – 4Kc
2KGCKT0(X0/0)2PG

2 + 3KcKT0(X0/0)PGX. Here we have derived the 

force for positive PG. For PG at any angle the work done is the same. Hence we will replace PG by 

its absolute value, |PG|: 

EPGI = KT0X0
2[–2Kc

2(|PG|/0)2 – 4Kc
2KGC(|PG|/0)2 + 3Kc|PG|X/X00] (224) 

In Eq. (224) and the above paragraph, the subscript PGI refers to -energy of the Positive-

attached-aether due to the Gravitational effects of extrinsic-energy in the region Inside of the 

sphere. 
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The total energy of an analysis-cube is found by summing the tension, quantum and gamma 

energies found in Eqs. (214), (215) and (224). EPG = ETPGI + EQPGI + EPGI = KT0X0
2[(1/2) + 

Kc|PG|/0 + Kc
2|PG|2/0

2 + 3X/X0 + 3Kc|PG|X/2X00] + (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + 

Kc
2|PG|2/0

2 – 3X/X0 + 3Kc|PG|X/2X00] + KT0X0
2[–2Kc

2(|PG|/0)2 – 4Kc
2KGC(|PG|/0)2 + 

3Kc|PG|X/X00], or, using Eq. (22), KT0X0
2 = 2KQ0/X0

2, 

EPG = KT0X0
2 – 4Kc

2KGCKT0(X0/0)2|PG|2 = KT0X0
2(1 – 4Kc

2KGC|PG|2/0
2) (225) 

A similar expression, Eq. (G9), is derived in Appendix G for the negative-attached-aether: 

ENG = KT0X0
2 – 4Kc

2KGCKT0(X0/0)2|NG|2 = KT0X0
2(1 – 4Kc

2KGC|NG|2/0
2) (226) 

While Eqs. (225) and (226) have been derived inside a spherical region containing extrinsic-

energy, Appendix H shows that Eqs. (225) and (226) hold outside of the spherical region as well. 

Lastly, note that Eqs. (225) and (226) arise from the displacements PG and NG in the presence of 

the tension, quantum and gamma force fields. In general, displacements may be the result of 

superposition of individual displacements from several sources, but the work done will still be 

calculated from the displacements and the force fields. Therefore Eqs. (225) and (226) hold 

generally. 

D.3.5. The Physical Nature of the Gamma-Force Inside a Sphere of Positive-Attached-Aether 

Containing Extrinsic-energy. In the sections above we make four assumptions in our analysis 

regarding the case of extrinsic-energy within positive-attached-aether: 1) the gamma-force has a 

negative tension component; 2) the gamma-force has a negative pressure component; 3) 

displacement of the analysis-cube will not change its size; and 4) the energies associated with the 

gamma-force are negative for the displacement. This section will validate these assumptions while 

providing a physical understanding of the gamma-force. 
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D.3.5.1. The Negative Gamma-force Tension and Pressure Components. The gamma-force F 

is a force that balances against the sum of FT and FQ. Above in Eqs. (218) and (219) we have 

assigned two components to F and arranged the sum of these components such that the total F 

will subtract from the stronger of FT and FQ as needed to provide the balancing force. Since FQ is 

less than FT for the case discussed, the total F is a negative tension providing an additional 

outward force.  

The reason F has two components, and the reason the total F subtracts from the stronger of the 

forces, rather than adding to the weaker, is because the gamma-force originates from the force 

reductions caused by immersion of extrinsic-energy as specified in the Extrinsic-Energy Force-

Reduction Law. As the cubes are then displaced, the work done makes these force reductions grow, 

and these negative forces are the two components of the gamma-force. These forces then balance 

against the sum of FT and FQ as described above in Eqs. (218) and (219). 

D.3.5.2. Analysis-Cube Size During Displacement. As described above, when cube-P of 

positive-attached-aether is moved outward due to injection of extrinsic-energy, cube-P has its 

tension increased as described by Eq. (66), FTPP = KT0X0[1 + 2Kcx/0], and cube-P has its quantum-

force decreased as described by Eq. (68), FQPP = (2KQ0/X0
3)[1 – 2Kcx/0]. If there were no gamma-

force, cube-P would therefore compress. However, the overlapping cube-N of negative-attached-

aether has the opposite behavior (see Appendix G, section G.4.2), and with no gamma-force it 

would expand. (Eqs. (G1) and (G3) from Appendix G are FTN = KT0X0[1 – 2Kcx/0] and FQN = 

(2KQ0/X0
3)[1 + 2Kcx/0], respectively.) In order for the density postulate to hold as they displace, 

cube-P and cube-N must either both expand, both compress, or both retain their size. Since the 

sum of FT and FQ on cube-P, described by Eqs. (66) and (68), is equal and opposite to the sum of 
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FT and FQ on cube-N, this symmetry informs that the cube sizes will not change during their 

displacement, which is what is assumed above.  

D.3.5.3. The Physics Leading to the Gamma-Force Energies. We see that the gamma-force 

arises between the positive-attached-aether and the negative-attached-aether in a way that leads to 

no displacement-induced size change of the displaced cubes. We also see that motion of positive-

attached-aether causes FTP (the positive-attached-aether tension) to grow and FQP (the positive-

attached-aether quantum-force) to recede, and hence F (the total gamma-force) must grow in 

magnitude to offset this growing difference. In this case, F = FPT + FPQ, and inspection of Eqs. 

(218) and (219) reveals that FPT > FPQ. 

First consider the gamma-force component FPT. Since the displacement of the positive-attached-

aether is outward and the displacement of the negative-attached-aether is inward as extrinsic-

energy is injected, and since FPT is outward, it is the displacement of the inward-moving negative-

attached-aether that does the work against FPT to make it grow, since we must have inward motion 

against the force to do work against it to make it grow. (The outward-moving positive-attached-

aether would do negative work on FPT since it is moving in the direction of FPT and therefore it 

cannot be the source of growth for FPT.) Therefore we see that FPT is a negative tension that 

subtracts from the nominal tension within the positive-attached-aether, and yet work is done 

against it by the motion of the negative-attached-aether. Similarly, Appendix G discusses how the 

outward motion of the positive-attached-aether increases FNQ (the quantum-pressure component 

of the negative-attached-aether gamma-force), which is a negative pressure.  

Now let us look at the gamma-force component FPQ. Since the displacement of the positive-

attached-aether is outward and the displacement of the negative-attached-aether is inward as 

extrinsic-energy is injected, and since FPQ is inward, it is the displacement of the outward-moving 
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positive-attached-aether that does the work against FPQ to make it grow, since we must have 

outward motion against that force to do work against it to make it grow. (The inward-moving 

negative-attached-aether would do negative work on FPQ since it is in the direction of FPQ and 

therefore it cannot be the source of growth for FPQ.) Therefore we see that FPQ is a negative 

pressure that subtracts from the nominal quantum-pressure within the positive-attached-aether, and 

work is done against it by the motion of the positive-attached-aether. Similarly, Appendix G 

discusses how the inward motion of the negative-attached-aether increases FNT (the tension 

component of the negative-attached-aether gamma-force), which is a negative tension. 

Since FPT and FPQ are forces of a negative tension and negative pressure, respectively, they both 

contribute negative energies to (relax positive energies of) the aetherial cubes. FPT and FPQ both 

result from work increasing the effects of the Extrinsic-Energy Force-Reduction Law, which are 

negative energies, which is why the displacement energies are negative for the gamma-force. 

The leading FPT term in Eq. (218), 4KcKT0(X0/0)xr̂, and the leading FNQ term in Eq. (G6) from 

Appendix G, –4KcKT0(X0/0)xr̂, are what provide the mechanism by which each type of attached-

aether exerts forces on the other to maintain the equal-density postulate. The leading FPT term in 

Eq. (218) cancels the sum of the tension-force FPT and quantum-force FPQ, and when integrated 

over the displacement it also contributes a negative work to offset the net work done by FPT and 

FPQ. The trailing FPT term in Eq. (218), 4KcKGCKT0(X0/0)xr̂, and FPQ = –4KcKGCKT0(X0/0)xr̂ 

in Eq. (219) are forces which balance each other while contributing more negative work to reduce 

the total energy in the positive-attached-aether. It is this reduction in total energy that leads to 

Newtonian gravity, as discussed below. 



 

103 
 

D.3.5.4. The Gamma-Force in Other Cases. Here in section D.3.5 we have looked at the case of 

extrinsic-energy immersion into positive-attached-aether. For discussion of the remaining cases 

see Appendices G and H. 

  

D.4 – Tension, Quantum and Gamma Field Effects on Mass: Force on a 

Spherical Mass in a Gravitational Field 

Consider a region where there is an ambient attached-aether displacement PAG = –NAG (a 

gravitational field) not equal to zero. We have seen above in section D.2 that such displacement is 

caused by extrinsic-energy somewhere within the aether. To see the effect that PAG has on masses 

we will begin by gradually add a sphere of mass (extrinsic-energy) with final density E into the 

positive-attached-aether region that has the ambient PAG. Without loss of generality we can assume 

that the ambient displacement PAG is in the x direction, and that our sphere is centered at the origin. 

The energy of cubes within the sphere is derived above to result in Eq. (225): 

EPG = KT0X0
2(1 – 4Kc

2KGC|PG|2/0
2) (225) 

For analysis we will divide the sphere into slices of thickness ΔY centered at y = Y, and then 

further divide those slices into strips with thickness ΔZ centered at z = Z, as shown in Figures 13 

and 14. 
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Figure 13. A sphere of attached-aether containing extrinsic-energy (E) and a slice of width ΔY. 

Figure 13 shows a view of a sphere of attached-aether containing E with radius R. Examining a 

slice of thickness ΔY we can see that the half-height of that slice will be H = (R2 – Y2)1/2. 

 

Figure 14. A slice of attached-aether containing extrinsic-energy (E) and a strip of width ΔZ. 

Figure 14 shows a view of the slice of attached-aether containing E. The slice has the half-height, 

H, that we found in Fig. 13. Examining the strip of thickness ΔZ centered at Z we can see that the 

half-length of that strip will be L = (H2 – Z2)1/2. The strip shown in Fig. 14 has dimensions of ΔY 

by ΔZ by L. 
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Our aim is to evaluate the force on our sphere of mass when it is immersed in a region of attached-

aether where we have finite displacement PAG. Toward that aim, we first observe that the sphere 

of mass will cause its own longitudinal attached-aether displacement. Due to the symmetry of the 

situation, a sphere of mass will push nearby positive-attached-aether outward radially. With E 

causing a decrease in aether density inside of the sphere it occupies, the positive-attached-aether 

density inside that sphere, in, is shown above to lead to Eq. (194), which here becomes in = 0 – 

G/2. With no E inside of it, a sphere of radius R has (4/3)R30 of attached-aether inside. To 

decrease the density to in requires that the radius of the sphere expand so that (4/3)(R+R)3in 

= (4/3)R30, or in = R30/(R+R)3 = 0/(1+R/R)3 ≈ 0(1 – 3R/R). With in = 0 – G/2 we 

obtain G/2 ≈ 30R/R, or, R/R = G/60. The displacement of the edge of the sphere is R = 

R(G/60). Now the magnitude of the displacement will grow linearly from the center of the sphere, 

so that in general, with PGS being the displacement caused by the sphere, inside the sphere we 

have: 

PGS = (G/60)r = (G/60)(xi + yj + zk)  (227) 

Since we now have an ambient attached-aether displacement PAG, which without loss of generality 

is considered to be in the x direction, PAG = PAGi, and the total attached-aether displacement within 

the sphere is PG = PAG + PGS = [PAG + (G/60)x]i + (G/60)yj + (G/60)zk. 

Returning to Figure 14, within the strip, and using Eqs. (225) and (227), the energy of a small 

positive-attached-aether analysis-cube centered at x, y, z is: 

EPG(x,y,z) = KT0X0
2(1 – 4Kc

2KGC|PAG+PGS|2/0
2) 

= KT0X0
2{1 – 4Kc

2KGC|[PAG + (G/60)x]i + (G/60)yj + (G/60)zk|2/0
2} 

= KT0X0
2{1 – 4Kc

2KGC[PAG
2+2PAG(G/60)x+(G/60)2x2+(G/60)2y2+(G/60)2z2]/0

2} (228) 
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We can now evaluate the force present on the strip depicted in Fig. 14. For a small additional (and 

virtual) displacement x, EPG will become: 

EPG(x+x,y,z) =   (229) 

KT0X0
2{1–4Kc

2KGC[PAG
2+2PAG(G/60)(x+x) +(G/60)2(x+x)2+(G/60)2y2+(G/60)2z2]/0

2} 

Subtracting Eq. (228) from Eq. (229) leaves the energy change during the virtual displacement: 

EPG(x,y,z) = EPG(x+x,y,z) – EPG(x,y,z) =  

–4KT0X0
2Kc

2KGC[2PAG(G/60)x + (G/60)2(2xx+x2)]/0
2 (230) 

In the above expression we can drop the term that is second order in the small quantity x, as we 

will take the limit as x  0. We can now evaluate the force on the strip by considering the sum 

of all volume elements within the strip. The term –4KT0X0
2Kc

2KGC(G/60)2(2xx)/0
2 can be 

dropped because for every value of positive x in our strip there is a value of negative x of equal 

magnitude. The surviving term is –4KT0X0
2Kc

2KGC2PAG(G/60)x/0
2 and this term is 

independent of x, y or z. Recalling that Eq. (230) refers to the change in energy for a single 

analysis-cube within the strip, we can form the relation for the force on the whole strip by summing 

over all of the analysis-cubes within the strip (strip is the symbol for that sum). The volume of the 

strip is 2LΔyΔz, and therefore the number of analysis-cubes within the strip is 2LΔyΔz/X0
3, and 

the magnitude of the force on the strip is 

FstripPG = strip {ΔEPG(x,y,z)/x} = [4KT0X0
2Kc

2KGC2PAG(G/60)/0
2][2LΔyΔz/X0

3] 

= 8LΔyΔzKT0Kc
2KGCPAGG/30X00

2 (231) 

The force on the strip shown in Fig. 14 is proportional to the volume of the strip (2LΔyΔz) but 

independent of x, y and z. The sum of the volume of all of the strips will be the volume of the 

sphere, Vsphere. Hence, we can sum the forces from all such strips to arrive at: 

FspherePG = 4VsphereKT0Kc
2KGCPAGG/30X00

2  (232) 
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Immersed extrinsic-energy will also affect the negative-attached-aether. In that case, the negative-

attached-aether is pulled into the sphere rather than pushed out. Hence, both the effect on the 

negative-attached-aether from the extrinsic-energy (Nsphere) and the ambient negative-attached-

aether displacement (NAG) are equal in magnitude but opposite in sign to the case of the positive-

attached-aether. Since the energies in Eqs. (228) and (229) are proportional to |PAG+PGS|2 for the 

positive case, replacement of PGS by –NGS and PAG by –NAG results in the same force magnitude 

for the negative case, FsphereNG = FspherePG = 4VsphereKT0Kc
2KGCPAGG/30X00

2. The total force 

magnitude is thus: 

FsphereG = FsphereNG + FspherePG = 8VsphereKT0Kc
2KGCPAGG/30X00

2 (233) 

Observe that the force is aligned with the direction of x in the above analysis, since the energy 

varies with x. We have chosen x to be aligned with PAG, so the force is aligned with PAG. Inside 

the sphere shown in Fig. 14 the total aetherial displacement PG increases in the direction of PAG 

as a result of the extrinsic-energy pushing the attached-aether outward. (On one side of the sphere 

the attached-aether is pushed in the opposite direction of PAG while on the other side it is pushed 

in the same direction as PAG. Within the sphere, PG increases from one side to the other.) Hence, 

the positive-attached-aether will be forced in the direction of PAG as lower energy is preferred. 

(Eq. (225), EPG = KT0X0
2(1 – 4KGCKc

2|PG|2/0
2) shows that larger values of PG lead to lower 

energy.) The force on the extrinsic-energy will be in the opposite direction as the force on the 

positive-attached-aether. As mentioned in section C.13, this can be thought of as analogous to 

pushing a ball downward through a tub of water: as the disturbance (the ball, or the extrinsic-

energy) is forced down, the substance it is pushed through (the water, or the attached-aether) is 

forced in the opposite direction. Hence, the force on the extrinsic-energy (the ball) is in the 

direction opposite to that on PAG (the water). 
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FsphereG = –8VsphereKT0Kc
2KGCPAGG/30X00

2 (234) 

We now recall Eq. (209), PGL – NGL = –0∇G/0, and recall that before the injection of the 

extrinsic-energy PAG = PGL and now with Eq. (211) NGL = –PGL we have PGL – NGL = 2PGL = 

2PAG = –0∇G/0, or PAG = –0∇G/20. Thus we arrive at  

FsphereG = 4VsphereKT0Kc
2KGC0∇GG/30

2X00
2 (235) 

To verify our sign, note that Eq. (225) relates that EPG = KT0X0
2(1 – 4Kc

2KGC|PG|2/0
2) and we see 

that two overlapped spheres of extrinsic-energy will have an energy in their cubes of EPG1 = 

2KT0X0
2[1 – 4Kc

2KGC(2PG)2/0
2] = 2KT0X0

2[1 – 16Kc
2KGCPG

2/0
2], while if those same two spheres 

are at a great distance the energy will be EPG2 = 2KT0X0
2[1 – 4Kc

2KGCPG
2/0

2]. Since nature favors 

smaller energy, we see that the force between amounts of extrinsic-energy is attractive, agreeing 

with our sign choice leading to Eq. (235). 

We now recall KT0 = 30
2X00

2/4Kc
20 from Eq. (141) and we also set G multiplied by the volume 

of the sphere multiplied by KGC to a quantity called QG 

QG = KGCVsphereG (236) 

We then arrive at the force on an amount of extrinsic-energy immersed within a region of ambient 

attached-aether displacement: 

FG = QG∇G  (237) 

 

D.5 – The Gravitational Potential of a Uniform Sphere of Mass 

We will now evaluate the gravitational potential of a uniform sphere of mass. In that case we have 

(4/3)RS
3ES = MSc2, or ES = 3MSc2/4RS

3, where RS is the radius of the sphere, MS is the mass 
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of the sphere, and ES is the extrinsic-energy density inside of the sphere. Recalling Eq. (193), G 

= 3[KG1–KG2]E0/2, we can define GS to be related to ES as  

GS = 3[KG1–KG2]ES0/2 = 9[KG1–KG2]MSc20/8RS
3 (r < RS) (238) 

Recall Eq. (208), ∇2G = –G/0. For the case of spherical symmetry, the derivatives with respect 

to the angular variables vanish leaving Eq. (208) as: 

∂2G/∂r2 + (2/r)∂G/∂r = –G/0 (239) 

The analysis will be divided into two regions, one inside of RS where G = SI and the other outside 

of RS where G = SO. Inside of RS the solution to Eq. (239) is 

SI = –GSr2/60 (240) 

It is easy to show that the potential given in Eq. (240) is a solution to Eq. (239). ∂SI/∂r = –GSr/30, 

(2/r)∂SI/∂r = –2GS/30, and ∂2SI/∂r2 = –GS/30 so ∂2SI/∂r2 + (2/r)∂SI/∂r = –GS/0.  

Now form ∇SI:  

∇SI = –GSr/30 (241) 

We again recall Eq. (209), PGL – NGL = –0∇G/0 and Eq. (211), NGL = –PGL, and hence PGL – 

NGL = 2PGL = –0∇G/0, or  

PGL = –0∇G/20  (242) 

Since SI is a specific form of G  

PGLIN = –0∇SI/20 = GSr/60 = –NGLIN (243) 

And now use Eq. (238) for GS, 

PGLIN = –NGLIN = ([KG1–KG2]ES/4)r = (3[KG1–KG2]MSc2/16RS
3)r (244) 

Outside of RS, M and G are zero, and the solution to Eq. (239) is 

SO = C2/r – C3 (245) 
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It is easy to show that the potential SO given in Eq. (245) is a solution to Eq. (239). ∂SO/∂r = –

C2/r2, (2/r)∂SO/∂r = –2C2/r3, and ∂2SO/∂r2 = 2C2/r3 so ∂2SO/∂r2 + (2/r)∂SO/∂r = 0. The constants 

of integration, C2 and C3, are set so that SO(RS) = SI(RS) = –GSRS
2/60: 

SO = GSRS
3/3r0 – GSRS

2/20  (246) 

(Be reminded that Eq. (246) involves the density GS inside the sphere because it sets the boundary 

condition. The density G outside the sphere is zero.) Eq. (246) leads to  

∇SO = –(GSRS
3/3r20)r̂ (247) 

Now use Eq. (242), PGL = –0∇G/20, where now SO is a specific form of G 

PGLOUT = –0∇SO/20 = (GSRS
3/6r20)r̂ = –NGLOUT (248) 

Using Eq. (238) for GS leaves  

PGLOUT = –NGLOUT = (3[KG1–KG2]MSc2/16r2)r̂ (249) 

Note that Eqs. (244) and (249) obtain equal values at r = RS, as they must. 

 

D.6 – Newton’s Law of Universal Gravitation 

It is possible to further manipulate Eq. (237) into a more familiar form for the case of two 

interacting masses. Consider two homogenous spheres S1 and S2, with masses M1 and M2, 

respectively, and radii R1 and R2, respectively. Without loss of generality we can consider S2 to be 

centered at the origin. With S1 centered at r > R1 + R2, Eq. (247) informs that ∇SO2 from M2 is 

∇SO2 = –(GS2R2
3/3r20)r̂ and therefore Eq. (237) for the force between the two masses becomes 

FGM1M2 = QG1∇SO2 = –(QG1GS2R2
3/3r20)r̂. Recall Eq. (238), GS = 3[KG1–KG2]ES0/2, to get 

FGM1M2 = QG1∇SO2 = –(QG1[KG1–KG2]E2R2
30/2r20)r̂. And with E2 = 2M2c2/[(4/3)R2

3] this 

becomes FGM1M2 = –(32M2c2QG1[KG1–KG2]0/8r20)r̂. Next, recall from above Eq. (236) that QG 
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is KGCVsphereG, or, in this case, using Eq. (193), QG1 = KGC(4/3)R1
3G1 = KGC2R1

3[KG1–

KG2]E10. With E1 = 1M1c2/[(4/3)R1
3], QG1 = 3KGC[KG1–KG2]01M1c2/2, leaving 

FME1ME2 = FGNEWTON = 

–(92M2c2KGC[KG1–KG2]20
21M1c2/16r20)r̂ = –(GN1M12M2/r2)r̂ (250) 

In the low velocity limit, 1 = 2 = 1, and Eq. (250) is recognized as Newton’s Law of Universal 

Gravitation where GN is the combination of constants 

GN = 9KGC[KG1–KG2]20
2c4/160 = 6.6743x10–11 N m2/kg2 (251) 

Dimensional analysis. From Eqs. (183) to (186) we see that KG1E and KG2E are dimensionless, 

KGC is also dimensionless and so [KG1–KG2]20
2 has the dimensions of 0

2/E
2, and hence GN has 

the dimensions of 0
2c4/E

20. From Eq. (178) E is in kg(m/s)2m-3 = kg s-2m-1, 0 is in A s m-3, 

and 0 is in m-3kg-1 s4A2, so the dimensions of GN are (A s m-3)2(m/s)4/(kg s-2 m-1)2(m-3 kg-1 s4 A2) 

= (A2 s-2 m-2)/(kg m-5 A2) = m3/(kg s2) = N m2/kg2 as expected. 

 

D.7 – Gravitational Redshift 

Eq. (250), FGNEWTON = –(GN1M12M2/r2)r̂, can be used to evaluate the gravitational redshift for 

photon emission from stars by assigning 1M1 = MSTAR for a star of mass MSTAR, and 2M2 = hf/c2 

as the equivalent mass of the photon, where h is Planck’s constant and f is the frequency of the 

light. Here, we will evaluate a star comoving with the aetherial rest frame, and hence 1 = 1. By 

integrating the force over the distance traveled, we can find the energy change as the photon moves 

radially outward from the surface (at R0) of the star: 

EPHOTON(r) – EPHOTON(R0) = GN1M12M2/r – GN1M12M2/R0  

= (GNMSTARhf/c2)(1/r – 1/R0) (252)  
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Evaluating the above expression for infinite r, and assigning EPHOTON at infinity to hf, results in 

what is commonly called the Newtonian Limit for the gravitational redshift, EPHOTON(R0) = hf + 

GNMSTARhf/R0c2 = hf(1 + GNMSTAR/R0c2). 

 

D.8 – Masses of the Tension, Quantum and Gamma Fields 

Section D.3 derives the tension, quantum and gamma energies of an analysis-cube inside a 

positive-attached-aether sphere containing extrinsic-energy as Eqs. (214), (215) and (224), 

respectively: 

ETPGI = KT0X0
2[(1/2) + Kc|PG|/0 + Kc

2(|PG|/0)2 + 3X/X0 + 3Kc|PG|X/2X00] (214) 

EQPGI = (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2|PG|2/0
2 – 3X/X0 + 3Kc|PG|X/2X00] (215) 

EPGI = KT0X0
2[–2Kc

2(|PG|/0)2 – 4Kc
2KGC(|PG|/0)2 + 3Kc|PG|X/X00] (224) 

Appendix H shows that outside the extrinsic-energy sphere these equations become: 

ETPGO = KT0X0
2[(1/2) + Kc|PG|/0 + Kc

2(|PG|/0)2 – Kc|PG|X/4X00] (H2) 

EQPGO = (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2(|PG|/0)2 – Kc|PG|X/4X00] (H4) 

EPGO = KT0X0
2[–2Kc

2(|PG|/0)2 – 4Kc
2KGC(|PG|/0)2 + Kc|PG|X/2X00] (H6) 

The red terms in the six equations above will be dropped since they involve X/X0 leaving: 

ETPG = (KT0X0
2)[(1/2) + Kc|PG|/0 + Kc

2|PG|2/0
2] (253) 

EQPG = (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2|PG|2/0
2] (254) 

EPG = –2KT0Kc
2(X0/0)2|PG|2 – 4Kc

2KGCKT0(X0/0)2|PG|2 (255) 

Since these fields have energy, they will also have an equivalent gravitational-mass. Here we will 

make the assignments: 
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The Gravitational-Mass Assignment. The tension-energy ETPG (ETNG) leads to a positive 

(negative) gravitational-mass while the quantum-energy EQPG (EQNG) leads to a negative (positive) 

gravitational-mass. 

For the positive-aether, the gamma-force has a negative tension, which leads to a negative 

gravitational-mass, and it also has a negative quantum-force, which leads to a positive 

gravitational-mass. For the energy, both the negative gamma tension and the negative gamma 

quantum-force lead to negative contributions, since they are reductions in the overall positive force 

quantities. In the energy term –4Kc
2KGCKT0(X0/0)2|PG|2 from Eq. (255), half comes from the 

negative tension and half comes from the quantum-force. Since the tension and the quantum-force 

lead to opposite signs of mass, this term will not contribute to the mass. The remaining gamma-

energy term, –2KT0Kc
2(X0/0)2|PG|2, is the dominant tension term and it will contribute a negative 

mass. We now apply the usual formula E = mc2 along with the gravitational-mass assignments to 

Eqs. (253), (254) and (255). With use subscript of PTQ for the positive-aether tension, quantum 

and gamma fields, we obtain mPTQ = {(KT0X0
2)[(1/2) + Kc|PG|/0 + Kc

2|PG|2/0
2] – 

(2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2|PG|2/0
2] – 2KT0Kc

2(X0/0)2|PG|2}/c2. Using Eq. (22), KT0X0
2 = 

2KQ0/X0
2 we get 

mPTQ = 2(KT0X0
2/c2)[Kc|PG|/0 – Kc

2|PG|2/0)2] (256) 

Appendix G derives the tension, quantum and gamma energies of an analysis-cube within a 

negative-attached-aether sphere containing extrinsic-energy as Eqs. (G2), (G4) and (G8), 

respectively. Appendix H derives what those equations become outside of the extrinsic-energy 

sphere as Eqs. (H8), (H10) and (H12). Eliminating the X/X0 terms as we did for the positive case 

we obtain 

ETNG = (KT0X0
2)[(1/2) – Kc|NG|/0 + Kc

2|NG|2/0
2] (257) 
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EQNG = (2KQ0/X0
2)[(1/2) + Kc|NG|/0 + Kc

2|NG|2/0
2] (258) 

ENG = –2Kc
2KT0(X0/0)2|NG|2 – 4Kc

2KGCKT0(X0/0)2|NG|2 (259) 

For the negative-aether, the gamma-force has a negative quantum-force, which leads to a negative 

gravitational-mass, and it also has a negative tension, which leads to a positive gravitational-mass. 

For the energy, both the negative gamma tension and the negative gamma quantum-force lead to 

negative contributions, since they are reductions in the overall positive force quantities. In the 

energy term –4Kc
2KGCKT0(X0/0)2|NG|2 from Eq. (259), half comes from the negative tension and 

half comes from the quantum-force. Therefore this term will not contribute to the mass. The 

remaining gamma-energy term, –2KT0Kc
2(X0/0)2|NG|2, is the dominant quantum-energy term and 

it will contribute a negative mass. We again use the usual formula E = mc2. Hence we obtain mNTQ 

= {–(KT0X0
2)[(1/2) – Kc|NG|/0 + Kc

2|NG|2/0
2] + (2KQ0/X0

2)[(1/2) + Kc|NG|/0 + Kc
2|NG|2/0

2] – 

2Kc
2KT0(X0/0)2|NG|2}/c2. Using Eq. (22), KT0X0

2 = 2KQ0/X0
2 we get  

mNTQ = 2(KT0X0
2/c2)[Kc|NG|/0 – Kc

2|NG|2/0
2] (260) 

Now make use of Eq. (221), NGL = –PGL, which leads to |NGL| = |PGL| to arrive at the total 

gravitational-mass of the fields: 

mTQ = mPTQ + mNTQ = 4(KT0X0
2/c2)[Kc|PG|/0 – Kc

2|PG|2/0
2] (261) 

It is useful to divide Eq. (261) by the volume of the analysis-cube X0
3 and then form the two 

components of the field-mass density 

M1 = 4KT0Kc|PG|/0X0c2 = KG3PG  (*See note after Eq. (263).) (262) 

M2 = –4Kc
2KT0|PG|2/X00

2c2 = –KG4PG
2 (263) 

(*Note that we must neglect any first-field-mass contribution to PG when using Eq. (262) to find 

the first-field-mass density. See section D.12 below.) 

From the above, the constants KG3 and KG4 are: 
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KG3 = 4KT0Kc/0X0c2 (264) 

KG4 = 4Kc
2KT0/X00

2c2 (265) 

Dimensional Analysis. Kc is dimensionless, KT0X0
2 is an energy, kg m2/s2, and X0 is a length, so 

KT0 is in kg/s2. 0 is a length. Hence KG3 is in (kg/s2)/[m2(m/s)2] = kg/m4, and M1 = KG3PG is in 

kg/m3 as expected. KG4 is in (kg/s2)/[m3(m/s)2] = kg/m5, and M2 = –KG4PG
2 is in kg/m3 also as 

expected. 

 

D.9 – Tension, Quantum and Gamma Field-Mass Effects on Two 

Interacting Spherically Symmetric Masses 

Section D.8 has shown that field-mass effects have two terms, one with positive gravitational-

mass, from Eq. (262), and one with negative gravitational-mass from Eq. (263). This section will 

investigate those field-mass effects in the two-body problem involving a first body of mass m and 

a second body of mass M. The second body will be assumed to have a uniform mass-density within 

a sphere of radius R. 

D.9.1. The First-Field-Mass Effect. Eq. (262) gives M1 = KG3PG as a positive field-mass-

density. For r < R, Eq. (244) informs that PGLIN = (3[KG1–KG2]MSc2/16RS
3)r, and therefore, 

recalling that PGLIN is the magnitude of PGLIN, M1 = KG3PGLIN = KG3(3[KG1–KG2]MMc2/16R3)r 

for r < R. The total first-field-mass M1IN within a sphere of radius r can be found by integrating 

M1 within that sphere, M1IN = 4∫ M1 r2 dr = 4∫ KG3(3[KG1–KG2]MMc2/16R3)r3dr, leaving:  

M1IN = KG3(3[KG1–KG2]MMc2/16R3)r4 = KG5(MM/R3)r4 (for r < R) (266) 

In Eq. (266) KG5 is a combination of other constants: 

KG5 = KG3(3[KG1–KG2]c2/16)  (267) 
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For r > R, Eq. (249) informs that PGLOUT = (3[KG1–KG2]MSc2/16r2)r̂, and therefore, M1 = 

KG3PGLOUT = 3KG3[KG1–KG2]MMc2/16r2 for r > R. The total first-field-mass M1SHELL within a 

spherical shell of outer radius r and inner radius R can be found by integrating M1 within that 

shell, M1SHELL = 4∫ M1 r2dr = 4∫(3KG3[KG1–KG2]MMc2/16r2)r2dr = (3KG3[KG1–

KG2]MMc2/4)r = 4KG5MMr evaluated between R and r, or M1OUT = 4KG5MM(r – R). To get the 

full mass inside of r, but outside of R, we must also add the mass inside of R by evaluating Eq. 

(266) at R to get: 

M1OUT = 4KG5MM(r – R) + KG5MMR = 4KG5MMr – 3KG5MMR (for r > R) (268) 

D.9.2. The Second-Field-Mass Effect.  Eq. (263) gives M2 = –KG4PG
2 as a negative field-mass-

density. For r < R, Eq. (244) informs that PGLIN = (3[KG1–KG2]MSc2/16RS
3)r, and therefore, 

recalling that PGLIN is the magnitude of PGLIN, M2 = –KG4PGLIN
2 = –KG4(3[KG1–

KG2]MMc2/16R3)2r2 for r < R. The total second-field-mass within a sphere of radius r, M2IN, is 

found by integrating M2 within the sphere, M2IN = 4∫ M2 r2 dr = 4∫ –KG4(3[KG1–

KG2]MMc2/16R3)2r4dr = –4KG4(3[KG1–KG2]MMc2/16R3)2r5/5, or: 

M2IN = –(4KG4/5)(3[KG1–KG2]MMc2/16R3)2r5 = –KG6(MM/R3)2r5 (for r < R) (269) 

In Eq. (269) KG6 is a combination of other constants: 

KG6 = (4KG4/5)(3[KG1–KG2]c2/16)2 = 9KG4[KG1–KG2]2c4/320  (270) 

For r > R, Eq. (249) informs that PGLOUT = (3[KG1–KG2]MMc2/16r2)r̂, and therefore, M2 = –

KG4PG
2 = –KG4PGLOUT

2 = –KG4(3[KG1–KG2]MMc2/16r2)2 for r > R.  The total second-field-mass 

M2OUT within a spherical shell of outer radius r and inner radius R can be found by integrating 

M2 within that shell, M2SHELL = 4∫ M2 r2dr = –4∫ KG4(3[KG1–KG2]MMc2/16r2)2r2dr = 
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4KG4(3[KG1–KG2]MMc2/16)2/r = 5KG6(MM)2/r evaluated between R and r, and we must also 

add the mass from Eq. (269) evaluated at R leaving M2OUT = 5KG6(MM)2/r – 5KG6(MM)2/R – 

KG6(MM)2/R, or: 

M2OUT = 5KG6(MM)2/r – 6KG6(MM)2/R (for r > R) (271) 

Dimensional Analysis. From Eqs. (183) to (186) we see that KG1E and KG2E are dimensionless 

and so [KG1–KG2] has the dimensions of 1/E. From Eq. (178) E is in kg (m/s)2 m-3 = kg s-2 m-1, 

and so [KG1–KG2] is in kg-1 s2 m. In section D.8 we found KG3 is in kg/m4. With Eq. (267) KG5 = 

KG3(3[KG1–KG2]c2/16) and so KG5 is in (kg/m4)(kg-1 s2 m)(m/s)2 = m-1. Hence M1IN from Eq. 

(266) and M1OUT from Eq. (268) are in kg, as expected. In section D.8 we found KG4 is in kg/m5. 

With Eq. (270) KG6 = 9KG4[KG1–KG2]2c4/320, KG6 is in (kg/m5)(kg-1 s2 m)2(m/s)4 = kg-1m. Hence 

M2IN from Eq. (269) and M2OUT from Eq. (271) are in kg, as expected. 

D.9.3. Gravitational Force on a Mass m due to a Spherically Symmetric Mass M including 

the Field-Mass Effects. The field-masses determined in Eqs. (266), (268), (269) and (271) are all 

spherically symmetric about the center of the large spherically symmetric mass M. Recall that 

without the field-masses, the force on m from M is Newton’s Law of Universal Gravitation, Eq. 

(250). We will now include the field-masses.  For spherically symmetric mass distributions, the 

force on a small mass m at a distance r from the center of M will be the same as if all of the mass 

within the sphere of radius r was instead centered at the center of M. (This result is shown in 

elementary physics courses.)  

To find the force on m including the field-mass effects for r < R we use Eq. (250), FGNEWTON = –

(GN1M12M2/r2)r̂, substitute in mm for 1M1 and for 2M2 we substitute in MM(r/R)3 plus the 

field-masses of Eqs. (266) and (269). Note also that no additional factors of  need be multiplied 

to the field-masses, as the field-masses result from aetherial distortion and aetherial distortions of 
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course do not move respect to the aether (any associated  is unity). This leaves FGIN = –

GNmm[MM(r/R)3 + KG5(MM/R3)r4 – KG6(MM/R3)2r5]r̂/r2, or: 

FGIN = –(GNmmMM/R3)[r + KG5r2 – KG6(MM/R3)r3]r̂ (r < R) (272) 

For r > R, we again use Eq. (250), and again substitute in mm for M1 but this time substitute in 

MM plus the field-masses of Eqs. (268) and (271). This leaves FGOUT = –GNMm(MM + 

4KG5MMr – 3KG5MMR + 5KG6M
2M2/r – 6KG6M

2M2/R) r̂/r2, or: 

FGOUT (r > R) 

= –GNmm(MM/r2+4KG5MM/r–3KG5MMR/r2+5KG6M
2M2/r3–6KG6M

2M2/r2R)r̂ (273) 

We now introduce an effective-mass MEFF,  

MEFF = MM – 3KG5MMR – 6KG6M
2M2/R  (274) 

With Eq. (274), Eq. (273) becomes: 

FGOUT = –GNmm(MEFF/r2 + 4KG5MM/r + 5KG6M
2M2/r3)r̂ (m << M ; r > R) (275) 

In deriving Eq. (275) we have not included any field-mass effects originating from m. That is 

because to arrive at Eq. (275) we assume m << M. Notice that we have now derived a new 

gravitation formula for situations where the condition m << M applies. The new equation includes 

Newtonian universal gravitation via the term GNmmMEFF/r2 and we have also discovered two 

additional terms that are associated with the field-masses. 

 

D.10 – Galactic Gravitational Phenomena; the First-Field-Mass Identified 

as Dark-Matter; a Rough Determination of KG5 

Observations indicate that many stars are attracted to the center of galaxies by a force stronger 

than the GNmM/r2 given by Newton’s law, and the presence of some unseen “dark-matter” would 



 

119 
 

explain these results. In Eqs. (272) and (275) we see that the KG5 terms, which are associated with 

the first-field-mass, are a strong candidate for such dark-matter. 

D.10.1. Gravitational Phenomena in Spiral Galaxies. As a first example of a system involving 

a large spherical mass distribution interacting with a small mass, we consider the case of spiral 

galaxies. In such galaxies there is typically a dense core, which we will treat as a large spherical 

mass M, as well as distant individual stars with masses m much smaller than that of the core, 

allowing the analysis of section D.9 to be used. It is known that the orbital velocities of stars far 

from the center of spiral galaxies are approximately constant independent of distance from the 

core.  

Eqs. (272) and (275) fit the observations of spiral galaxies well. In the far reaches of the galaxy, 

where the distance to the star (r) becomes much greater than the radius of the galactic core (R), we 

can see that the KG5 term of Eq. (275), –GNmm4KG5MM/r, eventually dominates, as the other 

terms fall off with faster powers of r. Hence at large values of r the centripetal acceleration can be 

set equal to the dominant force term, mmv2/r = GNmm4KG5MM/r, and we see that for large r the 

velocity is independent of r, consistent with observations. Yet inside the core, where r < R, we 

must use Eq. (272) where the KG5 term is –(GNmmMMKG5r2/R3), which drops quadratically to 

zero with r, indicating that relatively little first-field-mass will be found in the center of the galactic 

core. Identifying the first-field-mass as dark matter is therefore in good agreement with 

observations. 

D.10.2. Gravitational Phenomena in Ultra Diffuse Galaxies. It is observed that in some ultra-

diffuse-galaxies (UDGs) dark-matter dominates while in other UDGs dark-matter has much less 

of an effect. Such observations are consistent with the analysis of section D.9 if it is assumed that 

the cores of UDGs that show large dark-matter effects contain a central massive core, while UDGs 
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where dark-matter effects are much less do not contain such a core. For the case where a central 

massive core exists, the mass M and radius R in the analysis of section D.9 will correspond to the 

mass MC and radius RC of the core, respectively. For that case, the first-field-mass (dark-matter) 

effects will be observed through the term –GNmm4KG5MMC/r of Eq. (275) outside of the core (r 

> RC). However for the second case, where there is no dense core, a spherically symmetric, diffuse 

stellar density will lead to M and R of section D.9 corresponding to the mass MUDG and radius 

RUDG of the whole UDG, respectively. For that case, the first-field-mass (dark-matter) effects will 

be observed through the term –(GNmmMMUKG5r2/RU
3) of Eq. (272). Hence the ratio between 

these cases is (GNmmMMUKG5r2/RU
3)/(GNmm4KG5MMC/r) = MUr3/4MCRU

3. For stars located at 

r = RU/2, and assuming MC = MU/2, the ratio is 1/16, showing that UDGs with a dense core will 

show a much greater indication of dark-matter than those without a dense core. 

D.10.3. Using Milky Way Observations to Determine an Approximate Value of KG5. A 2010 

paper [8] gives a mass estimate of the Milky Way as 6.9x1011 MSUN within 80 kpc (2.469x1021 m). 

With the mass of the sun (MSUN) equal to about 1.988x1030 kg, this leaves the mass of the Milky 

Way as MMWT = 1.372x1042 kg within 80 kpc, where the subscript T denotes the total mass, 

including a postulated “dark matter” component. A 2011 paper [9] gives a stellar mass within the 

virial radius of the Milky Way as 6.43x1010 MSUN, or MMWS = 1.279x1041 kg while giving a value 

of MMWT = 1.26x1012 MSUN for the total mass within the virial radius. A 2020 reference [10] gives 

MMWDM = 8.3x1011 MSUN for the Milky Way dark mass and MMWT = 8.9x1011 MSUN for the total 

mass within the virial radius. Reference 10 considers several possible model parameters to arrive 

at its numbers, with the virial radius of the models ranging between 186 and 202 kpc.  

Presently, there remains considerable uncertainty in the values of the mass of our galaxy. Our 

purpose here is to use an admittedly very simplistic modeling of the Milky Way to 1) verify the 
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essential agreement of our gravitational equations, Eqs. (272) and (275), with experimental data 

and 2) arrive at an estimate for the value of KG5 from those data. 

Reference 8 gives a most likely value of circular star velocities at 80 kpc as 193 km/s. The central 

massive region of the Milky Way has a radius R << 80 kpc, and for our purposes we will assume 

a model wherein the vast majority of stellar mass lies within 80 kpc of the galactic center and 

hence Eq. (275) applies at 80 kpc. As shown below in section D.12.2, the third term of Eq. (275) 

will be negligible at 80 kpc. We will set M = m = 1 for our estimate. We can now equate the force 

from the first two terms of Eq. (275) to the centripetal acceleration of the distant stars, 

GNm(MEFF/r2+4KG5M/r) = mv2/r, or, with MEFF ≈ M (MEFF ≈ M is shown below), GNM/r2 + 

4GNKG5M/r = v2/r or: 

KG5 = (v2 – GNM/r)/4GNM = 9.900x10-22 m-1 ≈ 10-21 m-1 (276) 

The second equation in Eq. (276) results from substituting in the values v = 1.93x105 m/s [8], r = 

80 kpc = 2.469x1021 m [8], M = MMWS = 1.279x1041 kg [9], and GN = 6.674x10-11 m3/kgs-2. With 

this value of KG5 the dark matter induced force per kg at 80 kpc is 4GNKG5M/r = 4(6.67x10-11 

m3/kgs-2)(9.9x10-22 m-1)(1.279x1041 kg)/(2.469x1021 m) = 1.383x10-11 m/s2. Meanwhile, the 

Newtonian gravitational term at 80 kpc is GNM/r2 = (6.67x10-11 m3/kg-s2)(1.279x1041 

kg)/(2.469x1021 m)2 = 1.400x10-12 m/s2. It is seen that the Newtonian gravitational term is about 

10% of 4GNKG5M/r, or that the first-field-mass makes up about 90% of the mass of the Milky Way 

within 80 kpc for the numbers used here. This is in reasonable agreement with present (and rather 

uncertain) estimates from experimental data. 

It is also of interest to compare our formulas with the estimates of galactic mass given in the 

references cited. From Eq. (268), M1OUT = 4KG5MMr – 3KG5MMR, we see that the first-field-

mass is expected to grow linearly with radius. Hence, if there were no other effects, and the Milky 
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Way was the only occupant of space, the mass inside 200 kpc should be about 2.5 times the mass 

inside 80 kpc. Multiplying 6.9x1011 MSUN (the mass inside 80 kpc given by reference 8) by 2.5 

leaves 1.725x1012 MSUN as the mass within 200 kpc, which is larger than the masses of references 

9 and 10. However, the Milky Way is not the only occupant of space and neighboring matter is 

expected to reduce the first-field-mass in regions far from the galactic center, as will be discussed 

in the next section. (Recall that the field-mass arises from PGL, and at a point centered between 

two equal masses PGL will be zero, so other massive bodies will reduce the field-mass.) As there 

is much neighboring matter within our Local Group, it is to be expected that the first-field-mass 

will depart significantly from linear growth at large distances from the galactic center. A further 

analysis is outside the scope of this paper. 



D.11 – Why Gravitational Infinities At Large Radii Do Not Occur 

Eq. (268) relates that the first-field-mass generated by a sphere of mass M and radius R is 

4KG5MMr – 3KG5MMR for r > R. Were this to hold indefinitely, the first-field-mass would 

become infinite as r does. But potentially even more problematically, without some limiting 

mechanism, the first-field-mass will itself act as a further source of PGL, and this will lead to more 

mass, leading to a further source of PGL, and so on, and each such term will tend toward infinity 

as r does. However, there is a limiting mechanism that prevents this, as will now be discussed. 

The potential issue of infinities is best illustrated in a series of solutions to Eq. (239), ∂2G/∂r2 + 

(2/r)∂G/∂r = –G/0. We have seen that outside a spherical mass of radius R, in the region where 

r > R and M = 0, that the first series solution to Eq. (239) is given by Eq. (246) G1 = GSR3/3r0 

– GSR2/20. Now use Eq. (209), PGL – NGL = –0∇G/0 and Eq. (211), NGL = –PGL, and hence 

PGL – NGL = 2PGL = –0∇G/0 so that  
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PGL = –0∇G/20  (277) 

For the present case of G1 = GSR3/3r0 – GSR2/20, PGL1 = –0∇G1/20 = (GSR3/6r20)r̂. Then, 

use of Eq. (262) gives the mass density from PGL1 as M11 = KG3PGL1 = KG3GSR3/6r20. 

For the second solution in our series, M11 becomes the source mass in Eq. (239). With Eq. (193), 

G = 3[KG1–KG2]E0/2, and with E = M11c2, we obtain G11 = 3[KG1–KG2]M11c20/2 = 3[KG1–

KG2](KG3GSR3/6r20)c20/2 = (KG33[KG1–KG2]c2/16)(16GSR3/12r2) = KG54GSR3/3r2. (Recall Eq. 

(267), KG5 = KG3(3[KG1–KG2]c2/16).) Eq. (239) becomes 

∂2G2/∂r2 + (2/r)∂G2/∂r = –4KG5GSR3/30r2 (278) 

The solution to Eq. (278) is G2= –4KG5GSR3ln(r)/30. To see this, ∂G2/∂r= –4KG5GSR3/30r so 

(2/r)∂G2/∂r = –8KG5GSR3/30r2, and ∂2G2/∂r2 = 4KG5GSR3/30r2 so ∂2G2/∂r2 + (2/r)∂G2/∂r = –

4KG5GSR3/30r2. Eq. (277) informs that PGL2 = –0∇G2/20 = (4KG5GSR3/60r)r̂. Then, Eq. (262) 

gives the mass density from PGL2 as M12 = KG3PGL2 = 4KG3KG5GSR3/60r. 

For the third solution, M12 is the source mass in Eq. (239), and G2 = 3[KG1–KG2]M12c20/2 = 

3[KG1–KG2](4KG3KG5GSR3/60r)c20/2 = (3KG3[KG1–KG2]c2/16)(KG54[4]2GSR3/12r) = 

([4KG5]2GSR3/3r) so Eq. (239) becomes 

∂2G3/∂r2 + (2/r)∂G3/∂r = –[4KG5]2GSR3/30r (279) 

G3 = –[4KG5]2GSR3r/60 solves Eq. (279) since ∂G3/∂r = –[4KG5]2GSR3/60 so (2/r)∂G3/∂r = –

[4KG5]2GSR3/30r, and ∂2G3/∂r2 = 0 so ∂2G3/∂r2 + (2/r)∂G3/∂r = –[4KG5]2GSR3/30r. Eq. (277) 

informs that PGL3 = –0∇G3/20 = ([4KG5]2GSR3/120)r̂. Then, Eq. (262) gives the mass density 

from PGL3 as M13 = KG3PGL3 = KG3[4KG5]2GSR3/120. 
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The fourth solution, has M13 as the source mass in Eq. (239); G3 = 3[KG1–KG2]M13c20/2 = 

3[KG1–KG2](KG3[4KG5]2GSR3/120)c20/2 = (3KG3[KG1–KG2]c2/16)(4KG5
2[4]3GSR3/24) = 

[4KG5]3GSR3/6 so Eq. (239) becomes 

∂2G4/∂r2 + (2/r)∂G4/∂r = –[4KG5]3GSR3/60 (280) 

G4 = –[4KG5]3GSR3r2/360 solves Eq. (280). To see this, ∂G4/∂r = –2[4KG5]3GSR3r/360 so 

(2/r)∂G4/∂r = –4[4KG5]3GSR3/360, and ∂2G4/∂r2 = –2[4KG5]3GSR3/360 so ∂2G4/∂r2 + 

(2/r)∂G4/∂r = –6[4KG5]3GSR3/360 = –[4KG5]3GSR3/60. Eq. (277) leads to PGL4 = –0∇G4/20 

= [4KG5]3GSR3r/360. Then, Eq. (262) gives the mass density from PGL4 as M14 = KG3PGL4 = 

KG3[4KG5]3GSR3r/360. Collecting the masses: 

M11 = KG3PGL1 = KG3GSR3/6r20 (281) 

M12 = KG3PGL2 = KG34KG5GSR3/60r = [4KG5r]M11 (282)

M13 = KG3PGL3 = KG3[4KG5]2GSR3/120 = [4KG5r]2M11/2 (283) 

M14 = KG3PGL4 = KG3[4KG5]3GSR3r/360 = [4KG5r]3M11/6 (284) 

We see that each term in our series is M1N = [(4KG5r)N-1/ (N-1)!]M11 for the first-field-mass 

density. We could allow N to range from N = 1 to infinity by continuing our process, and we would 

then arrive at the series form of an exponential. Were there no limiting mechanism, the total first-

field-mass density would be  = M11exp(4KG5r). However, there is no evidence for this. Rather, 

only the effects of the term M11 = KG3PGL1 = KG3GSR3/6r20 are seen. This empirically indicates 

a truncation of the power series to just one term,  = M11. 

Why do the higher order solutions of the power series (M12, M13, etc.) not manifest themselves 

in nature? The answer can be found by recalling the physics of the situation, where it is helpful to 

review each term one at a time. For the primary term, we see above that the mass equivalent of 
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extrinsic-energy M (M is most often a mass itself) leads to a displacement of the aether of PGL1 

= –0∇G1/20 = (GSR3/6r20)r̂. For the secondary term, we see above that the aetherial-expansion-

mass M11 leads to a displacement of the aether of PGL2 = –0∇G2/20 = (4KG5GSR3/60r)r̂. For 

both the primary and secondary terms, the aetherial displacements go to zero at infinite r. But for 

the tertiary term, were it to be allowed by nature, the aetherial-expansion-mass M12 would lead 

to a displacement of the aether of PGL3 = –0∇G3/20 = ([4KG5]2GSR3/120)r̂, and PGL3 does not 

go to zero at infinite r; rather, it is constant. If there is some sort of boundary condition at very 

large r that does not allow aetherial expansion, then PGL3 will be forced to zero by this effect. To 

force PGL3 = 0, the source term leading to PGL3, M12, must be cancelled by the boundary condition 

as well, and the power series will truncate after the source term, M11, and the power series for 

PGL will truncate after the first two terms PGL1 and PGL2. 

The physical condition just described can arise from neighboring galaxies. Each galaxy will push 

the positive-attached-aether outward from its center, and in between galaxies these effects will 

tend to cancel out, with P being forced to zero at some intervening point. This boundary condition 

will lead to the cancellation of PGL3 at such intervening points. Recall that PGL3 is a constant 

outward radial expansion. The boundary condition ensures that this constant is zero by providing 

fixed points for attached-aether at the boundary. And with PGL3 now zero everywhere, there is no 

source mass for the higher order terms. 

But what of the universe as a whole? Here there must be some sort of limiting condition on the 

aether at a very large distance, or it could result from an infinite aether that resists expansion due 

to its enormity, or perhaps galaxies also exist forever into the distance. We can only speculate on 

what reality exists at distances beyond our observational ability. In any case, the physical effect is 

that M12 attempts to achieve a uniform, positive, outward, constant displacement term of the 
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positive-attached-aether, but a reaction force from the boundary condition results in an additional 

condition that cancels M12. 

Since we can apply the above analysis to any ponderable mass, we arrive at the conclusion that we 

must neglect any first-field-mass contribution to PG when using Eq. (262), M1 = KG3PG. (We 

must only use the PG contribution originating from normal mass and second-field-mass when 

calculating M1.) 

D.12 – Intergalactic Forces. 

D.12.1. Dark Matter Between Galaxies. As just mentioned in section D.11, each galaxy will 

push the positive-attached-aether outward from its center, and in between galaxies these effects 

will tend to cancel out, with PG being forced to zero at some intervening point. Since it is the 

displacement of the aether by an amount PG that leads to the field-masses, this tells us that there 

will be little first-field-mass in between galaxies. And since we have identified the first-field-mass 

with dark matter, we expect little dark matter in between galaxies, which is again consistent with 

observation. 

Eq. (262) gives M1 = KG3PG as a positive field-mass-density, telling us where any dark matter is 

located; it is located where PG is. Dark matter is produced by the aetherial displacement PG which 

is most prevalent surrounding the large masses that typically exist in the centers of galaxies. In 

such galaxies, a large central mass M dominates gravitational interactions and for individual stars 

of mass m within those galaxies, the condition m << M holds, and Eq. (275) applies along with its 

dark matter term. But when the fields of several such large central masses become relevant (such 

as between galaxies) then PG is no longer solely determined by one large central mass, and the 

condition m << M for the Eq. (275) two-body interaction no longer applies.  
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So how do we calculate the forces between galaxies? In this case, PG should be calculated at every 

point in the relevant spatial volume based upon the non-dark matter present, and then the dark 

matter should be calculated from that PG field, and those dark matter effects should be included in 

the analysis. (The relevant spatial volume will include the galaxies we are calculating the forces 

for as well as any other matter near enough such that its gravitational effects are non-negligible.) 

At this point a review of the physics may be helpful. Any large galactic spherical central mass of 

radius R has a first-component of PG originating from normal matter which decreases as 1/r2 for r 

> R. This first-component of PG has a first-field-mass called dark matter, and the total dark mass 

within the radius r increases linearly with r. (See Eq. (268).) That dark matter gives rise to a second-

component of PG that decreases as 1/r (for r > R). That second-component of PG would generate a 

further dark mass leading to a constant third-component of PG, but boundary conditions preclude 

that from happening. (A constant PG component would be a constant outward radial aetherial 

displacement, and this is what is not allowed by the boundary conditions.) As a result of this 

physics, dark matter is only created from the first-component of PG, however both the first and 

second components of PG are relevant to the inter-galactic forces, and there is no third-component 

of PG due to boundary condition suppression of such a term. 

D.12.2. Evaluation of the Second-Field-Mass Effects. So far we have neglected the second-field-

mass when discussing distant stellar orbits and intra-galactic forces. It is of interest to verify that 

we can neglect this term. In section D.10.3 we look at the case where r = 80 kpc = 2.469x1021 m 

and M = 1.279x1041 kg. With those values we find that the first-field-mass term gives 4GNKG5M/r 

= 1.383x10-11 m/s2 and that the Newtonian term gives GNM/r2 = 1.400x10-12 m/s2. The second-

field-mass term from Eq. (275) (again setting M = 1 and dividing by mm) is 5GNKG6M2/r3. Below 

in Eq. (293) we find KG6 = 8.9167x10-28 m/kg, and hence 5GNKG6M2/r3 = 5(6.6743x10-11 m3/kg-
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s2) (8.9167x10-28 m/kg)(1.279x1041 kg)2/(2.469x1021 m)3 = 3.234x10-19 m/s2. We see that our 

neglect of the second-field-mass is entirely appropriate for distant stellar orbits within galaxies, 

and since the second-field-mass effect falls off with radius faster than both the Newtonian term 

and the first-field-mass term it is appropriate for us to ignore the second-field-mass when 

considering gravitational effects between galaxies as well. 

D.12.3. Dark Energy. Section D.11 has just speculated that a boundary condition counteracts the 

effect of what would otherwise be a continuous, outward, uniform radial PG displacement. This 

counteraction negates what would otherwise be an attractive dark mass effect. By taking this one 

step further, we can speculate that the boundary condition may apply a net negative effect. Such a 

speculation leads to an explanation of dark energy.  

D.12.4. Far-Distant Phenomena. In far-distant reaches of the universe we cannot be assured that 

the aether will remain in a state nominally at rest with respect to its velocity near the earth. It is 

entirely possible that the aether is expanding or contracting, and at great distances these effects 

could build up significantly. Such effects may affect what defines, physically, the zero value of PG 

in such regions. (Recall that the zero value of PG is its nominal position.) Boundary conditions in 

our analysis of some particular region of the aether would also be affected by aetherial expansion 

or contraction. Motion of the aether could certainly affect the motion of physical bodies such as 

galaxies. Also, at extremely large distances we cannot be completely certain that our observations 

remain sound, since we rely on images from light, and light itself might be affected during its 

lengthy travel over the billions of light-years it takes to reach us, especially in regions where the 

aether itself is moving. The present paper is predominantly concerned with physical phenomena 

that occur closer to home such as in our own galaxy and those nearby. In such nearby regions, our 
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derivations are consistent with an aether nominally at rest. The physics of far-distant realms should 

be the topic of future speculation, consideration and study. 

 

 

D.13 – Perihelion Advances and an Estimate of KG6 

Recall now Eq. (275), FGOUT = –GNmm(MEFF/r2 + 4KG5MM/r + 5KG6M
2M2/r3)r̂. In sections D.10 

and D.11 we have only dealt with the first two terms, due to the dominance of those terms term at 

relatively large r. At smaller r, which includes distances involving the orbits of the planets, the first 

term of Eq. (275) is dominant. However, we will now include the third term in our analysis. It will 

be seen that doing so allows for an understanding of the advance of the perihelions as well as an 

estimate of the constant KG6. 

D.13.1. Experimental Ephemerides Data. The ephemerides of the planets have been studied in 

detail. The results yielded by those studies are arrived at by a combination of measurements, 

fittings and calculations. An excellent set of results are presented by Pitjeva [11], and those results 

appear in the second column of table 1 below. It is important to note that the ephemerides results 

obtained by Pitjeva assume that general relativity is correct and use fittings for over 250 parameters 

to arrive at the results shown in table 1. 

D.13.2. Analytic Approach to Calculating the Perihelion Advance. Price and Rush[12] have 

determined a useful method to calculate the angle  swept out by the radius vector between two 

consecutive apsides of planetary orbits: 

 =  [3 + a {’(a)/(a)}]-1/2 (285) 
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In Eq. (285) a is the radius of a circular orbit that most closely coincides with the planet being 

evaluated and (a) is the total force on that planet. Referring to Eq. (275) (a) =  –GNmm(MEFF/r2 

+ 4KG5MM/r + 5KG6M
2M2/r3), or  

(a) = –KP2/a2 – KP3/a3 – KP1/a (286) 

In Eq. (286) we assign constants to aid us in our perihelion advance calculations: 

KP1 = 4GNmmKG5MM (287) 

KP2 = GNmmMEFF (288) 

KP3 = 5GNmmKG6M
2M2 (289) 

From Eq. (286) we get ’(a) = 2KP2/a3 + 3KP3/a4 + KP1/a2 and ’(a)/(a) = –[2KP2/a3 + 3KP3/a4 + 

KP1/a2]/[KP2/a2+KP3/a3+KP1/a] = –[2KP2/a3 + 3KP3/a4 + KP1/a2]/[(KP2/a2)(1+KP3/(KP2a)+KP1a/KP2] 

≈ –{[2KP2/a3 + 3KP3/a4 + KP1/a2]/(KP2/a2)}(1 – KP3/(KP2a) – KP1a/KP2) = –[2/a + 3KP3/KP2a2 + 

KP1/KP2](1 – KP3/(KP2a) – KP1a/KP2) which to first order in the small quantities KP3/(KP2a) and 

KP1a/KP2 is ’(a)/(a) = –2/a – KP3/KP2a2 + KP1/KP2 and hence Eq. (285) becomes 

 = [3 + a {’(a)/(a)}]-1/2 = [3 – 2 – KP3/KP2a + KP1a/KP2]-1/2  

≈ [1 + KP3/2KP2a – KP1a/2KP2] = [1 + 5KG6M/2a – 2KG5a] (290) 

The final equation of Eqs. (290) makes use of Eqs. (287), (288) and (289), and also uses the 

approximations MEFF ≈ M, m ≈ 1, and M ≈ 1. The advance of the perihelion is that portion in 

excess of , and the rate of advance of the perihelion is that excess divided by the time taken to go 

through the half orbit, which is T/2, where T is the period of the orbit. So the rate of perihelion 

advance is 

d/dt = ( – )/(T/2) = 2[5KG6M/2a – 2KG5a]/T (291) 

With Eq. (276) giving KG5 ≈ 10-21 m-1, and with known values for M, a, and T, we can now use 

the known “anomalous” perihelion advance for one planet to solve for KG6, and then use Eq. (291) 
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to determine the anomalous perihelion advances for the remaining planets. Manipulating Eq. (291), 

(1/2)Td/dt = 5KG6M/2a – 2KG5a, leading to  

KG6 = [(1/2)Td/dt + 2KG5a](2a/5M) (292) 

An estimate for the mass of the sun is M = 1.988e30 kg. Here, the data for the orbital radius a and 

the orbital period T will come from NASA’s planetary fact sheet [13], and the data for the 

anomalous perihelion advance from Pitjeva[11]. For Mars, the period is T = 687 days, the average 

radius is a = 227.9e6 km and its d/dt is 1.343 arc-seconds per century. There are 36,524 days per 

century, 2 radians per 360o, and 3600 arc-seconds per 1o, giving the conversion factor 1 arc-

sec/century = 1 arc-sec/century x 2radians/360 deg x 1 deg/3600 arc-sec x 1 century/36,524 days 

= 1.327 x 10-10 radians/day. Therefore, for Mars, (1/2)Td/dt = (1/2) x 687 days x 1.343 x 1.327 

x 10-10 radians/day = 6.123x10-8, 2KG5a = 2 x 10-21 m-1 x 227.9e9 m = 1.432x10-9 and 2a/5M 

= (2x227.9x109 m)/(5x1.998x1030 kg)=1.459x10-20 m/kg. Hence KG6=(6.123x10-8 +1.432x10-9) 

1.459x10-20 m/kg = 9.145x10-28 m/kg. This allows us to calculate the anomalous perihelion 

advances for all nine planets using Eq. (291) and the results of those calculations appear in Table 

1. Despite the simplicity of the Price and Rush treatment, it is seen that it leads to a rough 

agreement with Pitjeva’s results when Eq. (275) is used as the gravitational force law.  

Of course it is to be expected that the results of Price and Rush will not be exact. Critically, Price 

and Rush assume that the deviation from a circular orbit is small, but for Mercury the orbital 

eccentricity (the ratio of the aphelion to the average radius minus one) is 0.205, and for Mars it is 

0.094. Therefore, a more exact numerical approach will now be described. 

D.13.3. First Numerical Integration Approach. Numerical integration allows for a more exact 

calculation of the anomalous perihelion advance than the simple treatment of Price and Rush. In a 

first numerical integration, the expression F = ma is used to calculate the advance of the perihelion 
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for each of the nine planets. The routine: 1) calculates the force on the planet as given by Eq. (275) 

while setting MEFF ≈ M and M ≈ 1; 2) divides the force by the planet’s mass to obtain the 

acceleration; 3) multiplies the acceleration over a small time to find the change in velocity; 4) adds 

the change in velocity to find the new velocity; 5) multiplies the velocity over the same small time 

step to obtain the change in position; and 6) adds that change in position to find the new position. 

This is done for both of two cartesian coordinates. Then, this process is repeated. The process starts 

at the perihelion and ends at the aphelion. The aphelion is determined by the position the planet 

has when the radius first begins to decrease. In order to enable more rapid convergence, an estimate 

is made of the position of the planet at the end of the interval and that estimate is used to determine 

an estimated acceleration there. The acceleration used to arrive at the end-of-interval velocities is 

the average of the acceleration at the start and end of the interval. Likewise, the velocity used to 

determine the end-of-interval positions is the average of the velocities at the start and end of the 

interval. 

Table 1. Competing Calculations of “Anomalous” Perihelion Advances 
Planet Radius a 

(106 km) 
Period T 
(days) 

Pitjeva Eq. (291) 
(Price/Rush) 

Eq. (275) 
W/O KG5 

Eq. (275) 
With KG5 

Mercury 57.9 88.0 42.976 +/- 0.005 42.171 42.977 42.977 
Venus 108.2 224.7 8.644 +/- 0.033 8.805 8.623 8.589 
Earth 149.6 365.2 3.846 +/- 0.007 3.900 3.837 3.804 
Mars 227.9 687.0 1.343 +/- 0.007 1.343 1.351 1.322 

Jupiter 778.6 4,331 0.067 +/- 0.093 0.0468 0.0622 0.0453 
Saturn 1,433.5 10,747 -0.010 +/- 0.015 0.0013 0.0135 0.00104 
Uranus 2,872.5 30,589 -3.89 +/- 3.90 -0.0064 0.00238 -0.00646 

Neptune 4,495.1 59,800 -4.44 +/- 5.40 -0.0063 7.75e-4 -0.00630 
Pluto 5,906.4 90,560 2.84 +/- 4.51 -0.0058 4.17e-4 -0.00565 

The calculation routine is done twice. In the first pass through the calculation the predominant 

KP2/r2 gravitation term is the only term evaluated (KP1 and KP3 are set to zero). Since it is known 

analytically that a pure KP2/r2 force will lead to zero perihelion advance, the advance evaluated 

from the first pass is the numerical error during that pass. Next, the effect of the full force including 
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all three terms (KP1/r, KP2/r2 and KP3/r3) is evaluated in a second pass through the calculation. The 

advance calculated by the first pass (the numerical error) is then subtracted from the second pass 

to arrive at the final calculated perihelion advance. Results of the numerical integration are shown 

in the last two columns of Table 1, with one column showing the results when we include the 

effects of KG5 and the other column showing the results when KG5 is set to zero. (The last two 

columns both include the effects of the third term; KG6 is nonzero for both. See section I.3.6 in 

Appendix I for comments on the calculation.) 

D.13.4. Second Numerical Integration Approach. The first numerical approach is a numerical 

integration of F = ma, but we know this expression is not exact. The exact expression is F = dp/dt. 

At velocities much less than the speed of light, such as planetary velocities, the two expressions 

differ by a small amount. For a force transverse to the planet’s velocity the exact expression 

becomes F = ma, while for the force parallel to the planet’s velocity F = 3ma, where  = (1 – 

v2/c2)-1/2. To see this, with p = mv, transversely  doesn’t change and we get dp/dt|T = ma. 

However longitudinally  does change and dp/dt|L = d{mv}/dt = d{(1–v2/c2)–1/2mv}/dt = –(1/2)(1–

v2/c2)–3/2(–2v/c2)(dv/dt)(mv) + m(dv/dt) = 3(v2/c2)ma + ma = ma[1+2(v2/c2)] = ma[1 + 

(v2/c2)/(1–v2/c2)}] = ma[(1–v2/c2)/(1–v2/c2)}+(v2/c2)/(1–v2/c2)}] = ma[(1–v2/c2+v2/c2)/(1–

v2/c2)}] = ma[1/(1–v2/c2)}] = 3ma.  

To do the second numerical integration we apply the force to a change in momentum and we must 

therefore extract the velocity from the momentum. This extraction begins with the equation for the 

momentum, mv = (px
2 + py

2)1/2 = mc. Dividing by m, [(px/m)2 + (py/m)2]1/2 = c. Squaring, 

(px/m)2 + (py/m)2 = 22c2, or 22 = (px/mc)2 + (py/mc)2. Now, 22 = 2/(1–2) = (px/mc)2 + 

(py/mc)2, or (1–2)[(px/mc)2 + (py/mc)2] = 2. Rearranging, (px/mc)2 + (py/mc)2 = 2 + 2[(px/mc)2 

+ (py/mc)2] = 2[1 + (px/mc)2 + (py/mc)2], or 2 = [(px/mc)2 + (py/mc)2]/[1 + (px/mc)2 + (py/mc)2] 
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= [(px/m)2 + (py/m)2]/[c2 + (px/m)2 + (py/m)2] and hence  = (1–2)-1/2 = {1 – [(px/m)2 + (py/m)2]/[c2 

+ (px/m)2 + (py/m)2]}-1/2. 

The fastest moving planet, Mercury, has an orbital velocity near 1.6x10–4 c. Also, were  constant, 

the effect of  would just be an effective increase in mass and it would not affect the perihelion 

advance. What can affect the perihelion advance is a change in , and for Mercury the change in 

velocity is about an order of magnitude smaller than the velocity itself. With  involving v2/c2, it 

is expected then that the change in force due to the effects of  will be quite small. On the other 

hand, the advance of the perihelion is itself a very small effect, and so it is important to evaluate it 

precisely. 

The numerical algorithm for the more exact case calculates the momentum increment over an 

interval by multiplying the average force over the interval by the time step. Next, the momentum 

increment is added to the momentum at the start of the interval to obtain the momentum at the end 

of the interval. Then the velocity at the end of the interval is found from the expression p = mv. 

Once v is found, the rest of the numerical integration routine is the same as the one using F = ma. 

The second numerical integration again sets MEFF ≈ M and M ≈ 1 when evaluating the force. The 

results of the second numerical integration agree with the first numerical integration through the 

sixth decimal place. Hence the results shown in Table 1 are the same whether we use F = dp/dt or 

F = ma in our integration. (See section I.3.6 in Appendix I for comments on the calculation.) 

D.13.5. Summary of Results and Comparison to Experiment. Table 1 presents various 

calculations for the “anomalous” perihelion advance of the planets, showing results from Pitjeva 

and the three analyses described here. The Price/Rush column shows results determined from 

evaluating Eq. (291) where the parameter KG6 = 9.144784 x 10-28 m/kg is set to make the Mars 

perihelion advance match the Pitjeva value. For the second-to-last column, the numerical 
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integration of Eq. (275) was done assuming KG5 = 0 and a fit of KG6 = 8.904 x 10-28 m/kg to get 

the results shown. It is seen that numerical integration of Eq. (275) is in very good agreement with 

the Pitjeva results for that case. For the last column, the numerical integration of Eq. (275) was 

done assuming the value of KG5 as determined by Eq. (276), KG5 = 10-21 m-1 and KG6 was set to 

the value 

KG6 = 8.9167x10-28 m/kg (293) 

It is seen that numerical integration of Eq. (275) when KG5 is included results are now six standard 

deviations away from the quoted Pitjeva result for Earth, 1.7 standard deviations away for Venus 

and three standard deviations away for Mars. If this was the complete analysis, it would be 

somewhat counter-indicative of Eq. (275). However, there is an important caveat to the Pitjeva 

results. Notably, the work reported by Pitjeva assumes general relativity is correct and then uses 

that assumption to fit over 250 parameters in order to arrive at the published results. Also notably, 

the work reported by Pitjeva includes many effects not included in the treatment here, as Pitjeva 

includes the oblateness of the sun, the relativistic effect of Jupiter, and the effects of the planets 

upon one another as well as the effects of asteroids, moons, and Trans-Neptunian-Objects. Indeed, 

these latter effects are modeled with some of the fitted parameters. Also. the total perihelion 

advances are quite different than those presented in Table 1, as the effects of the planets and other 

objects is considerably larger than the “anomalous” advance now credited to relativity. When 

calculating the ephemerides it is important to have estimates for all these other effects, and it is 

hoped that Eq. (275) will soon be subjected to such an analysis. Since Table 1 shows that Eq. (275) 

yields results that are quite close to Pitjeva, a refitting of the over 250 fitted parameters will quite 

possibly lead to Eq. (275) agreeing with experiment just as well as general relativity does. 
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D.14 – Energy Flow Effects on the Analysis-cube 

The effects of energy flow will now be considered. We now propose: 

The Extrinsic-Energy Flow Speculation. When extrinsic-energy flows through the quantum, the 

tension in the positive (negative) attached-aether is reduced (increased) in the directions 

perpendicular to the flow with the magnitude of reduction proportional to the flow. 

Here we have proposed an Extrinsic-Energy Flow Speculation rather than an Extrinsic-Energy 

Flow Law, because we simply do not have enough experimental guidance to grant this speculation 

the status of a Law. Below we will show that this speculation leads to the observations concerning 

light bending, and we will present two candidates for the specifics of our speculation. But other 

candidates may exist as well, and we could have also added the quantum-force into our speculation. 

Establishment of an Extrinsic-Energy Flow Law is an important topic for future work. 

The Extrinsic-Energy Flow Speculation stipulates that energy flow modifies the tension, but does 

so only in the directions perpendicular to the flow. Without loss of generality we can assume here 

in section D.14 that the velocity of the energy is in the Z direction. With this coordinate choice, 

Eqs. (179) and (180) now become the equations 

FTPZ = KTPXQ = KT0(1 – KG1E)XQ (294) 

FTNZ = KTNXQ = KT0(1 – KG2E)XQ (295) 

FTPX = FTPY = KT0(1– KG1E)XQ – KT0KF4FEXQ (296) 

FTNX = FTNY = KT0(1– KG2E)XQ + KT0KF4FEXQ (297) 

In Eqs. (296) and (297) KF4 is an arbitrary proportionality constant, FE is the flowing extrinsic-

energy density, and the remainder of the symbols are defined in section D.1. The extrinsic-energy-

flow induced-tension-force (which changes the total-tension) is 

FTPXF = FTPYF = –FTNXF = –FTNYF = –KT0KF4FEXQ (298) 
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Of course, FTPZF = FTNZF = 0. The extrinsic-energy-flow induced tension-energy is found by 

integrating Eq. (298) in the same way the E induced tension-energy was found in section D.1 

resulting in 

ETPXF = ETPYF = –ETNXF = –ETNYF = –(1/2)KT0KF4FEXQ
2 (299) 

Of course, ETPZF = ETNZF = 0.  

The total energy of the positive-analysis-cube in the X dimension is EP = EQP + ETP + ETPXF, where 

ETP = (1/2)KT0(1 – KG1E)XQ
2 and EQP = KQ0(1 – KG2E)/XQ

2 are given in Eqs. (187) and (189), 

respectively. The extremum of EP can be found by setting dEP/dXQ = 0 = KT0(1 – KG1E)XQ – 

2KQ0(1 – KG2E)/XQ
3 – KT0KF4FEXQ, or KT0(1 – KG1E – KF4FE)XQ = 2KQ0(1 – KG2E)/XQ

3 at 

the extremum. Defining X3 as the value obtained at the extremum, X3
4 = 2KQ0(1 – KG2E)/KT0(1 

– KG1E – KF4FE), or, 

X3 = [2KQ0(1 – KG2E)/KT0(1 – KG1E – KF4FE)]1/4  (300) 

To see whether the extremum is a minimum or a maximum, we take the second derivative of EP:  

(d2EP/dXQ
2)X3 = [KT0(1 – KG1E – KF4FE) + 6KQ0(1 – KG2E)/XQ

4]X3  

= KT0(1 – KG1E – KF4FE) + 6KQ0(1 – KG2E)/[2KQ0(1 – KG2E)/KT0(1 – KG1E – KF4FE)] 

= 4KT0(1 – KG1E – KF4FE) (301) 

Since 1 > KG1E + KF4FE (or else the cube will not be bound) Eq. (301) is always positive, 

indicating an energy minimum. A similar equation follows for the Y dimension. To achieve this 

energy minimum, the x and y sides of the attached-aether cube will have a length of X3 as given 

by Eq. (300). The z side of the cube, unaffected by the energy flow, will have the length X1 as 

given by Eq. (192), X1 ≈ X0(1 + [KG1–KG2]E/4). 

Comparing Eq. (300) to X1 we see that the presence of mass and energy flow increases the size of 

the positive-analysis-cube. Assuming the change in size X3 = X3 – X0 is small compared to X0 
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we form X3 = [2KQ0(1 – KG2E)/KT0(1 – KG1E – KF4FE)]1/4 = [2KQ0/KT0]1/4[(1 – KG2E)/(1 – 

KG1E – KF4FE)]1/4 = X0[1 – KG2E]1/4[1 – KG1E – KF4FE]–1/4 ≈ X0[1 + KG1E/4  – KG2E/4 + 

KF4FE/4], and since the energy flow only affects the dimension perpendicular to the velocity we 

obtain 

X3X/X0 = X3Y/X0 = (X3 – X0)/X0 ≈ [KG1–KG2]E/4 + KF4FE/4 (302) 

X3Z/X0 = (X1 – X0)/X0 ≈ [KG1–KG2]E/4 (303) 

The total energy of the negative-analysis-cube in the X dimension is EN = EQN + ETN + ETNXF, 

where ETN = (1/2)KT0(1 – KG2E)XQ
2 and EQN = KQ0(1 – KG1E)/XQ

2 are given in Eqs. (188) and 

(190), respectively and ETNXF = (1/2)KT0KF4FEXQ
2 is given in Eq. (299). The extremum of EN can 

be found by setting dEN/dXQ = 0 = KT0(1 – KG2E)XQ – 2KQ0(1 – KG1E)/XQ
3 + KT0KF4FEXQ, or 

KT0(1 – KG2E + KF4FE)XQ = 2KQ0(1 – KG1E)/XQ
3 at the extremum. Defining X4 as the value 

obtained at the extremum, X4
4 = 2KQ0(1 – KG1E)/KT0(1 – KG2E + KF4FE), or, 

X4 = [2KQ0(1 – KG1E)/KT0(1 – KG2E + KF4FE)]1/4  (304) 

To see whether the extremum is a minimum or a maximum, we take the second derivative of EN:  

(d2EN/dXQ
2)X4 = [KT0(1 – KG2E + KF4FE) + 6KQ0(1 – KG1E)/XQ

4]X4  

= KT0(1 – KG2E + KF4FE) + 6KQ0(1 – KG1E)/[2KQ0(1 – KG1E)/KT0(1 – KG2E + KF4FE)] 

= 4KT0(1 – KG2E + KF4FE) (305) 

With 1 > KG2E – KF4FE Eq. (305) is always positive, indicating an energy minimum. A similar 

equation follows for the Y dimension. To achieve this energy minimum, the x and y sides of the 

attached-aether cube will have a length X4 given by Eq. (304). The z side of the cube, unaffected 

by the energy flow, will have the length X2 as given by Eq. (196), X2 ≈ X0(1 + [KG2–KG1]E/4). 
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Comparing Eq. (304) to X2 we see that the presence of mass and energy flow decreases the size of 

the negative-analysis-cube. Assuming the change in size X4 = X4 – X0 is small compared to X0 

we form X4 = [2KQ0(1 – KG1E)/KT0(1 – KG2E + KF4FE)]1/4 = [2KQ0/KT0]1/4[(1 – KG1E)/(1 – 

KG2E + KF4FE)]1/4 = X0[1 – KG1E]1/4[1 – KG2E + KF4FE]–1/4 ≈ X0[1 + KG2E/4 – KG1E/4 – 

KF4FE/4], and since the energy flow only affects the dimension perpendicular to the velocity we 

obtain 

X4X/X0 = X4Y/X0 = (X4 – X0)/X0 ≈ [KG2–KG1]E/4 – KF4FE/4 (306) 

X4Z/X0 = (X2 – X0)/X0 ≈ [KG2–KG1]E/4 = –X3Z/X0 (307) 

 

D.15 – Energy Flow Effect on the Gravitational Force 

Consider a region where there is an ambient attached-aether displacement PAG (a gravitational 

field) not equal to zero. Section D.4 considers the case where there is a stationary mass in such a 

region, and now we will consider the case of extrinsic-energy-flow in a gravitational field. Without 

loss of generality we can assume that our sphere is centered at the origin, and that its motion is in 

the Z direction. For analysis we will again divide the sphere into slices of thickness ΔY centered 

at y = Y, and then further divide those slices into strips with thickness ΔZ centered at z = Z, as 

shown in Figures 15 and 16. 
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Figure 15. A sphere of attached-aether containing flowing extrinsic-energy, and a slice of width 

ΔY. 

Figure 15 shows a view of a sphere of flowing extrinsic-energy with radius R. Examining a slice 

of thickness ΔY we can see that the half-height of that slice will be H = (R2 – Y2)1/2. 

 

Figure 16. A slice of attached-aether containing flowing extrinsic-energy, and a strip of width 

ΔZ. 

Figure 16 shows a view of the slice of attached-aether containing flowing extrinsic-energy. The 

slice has the half-height, H, that we found in Fig. 15. Examining the strip of thickness ΔZ centered 
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at Z we can see that the half-length of that strip will be L = (H2 – Z2)1/2. The strip shown in Fig. 16 

has dimensions of ΔY by ΔZ by L. 

We now observe that the sphere of flowing extrinsic-energy will cause its own longitudinal 

attached-aether displacement. Considering first the positive-attached-aether, Eqs. (302) and (303) 

give the increase in size of each analysis-cube due to mass and extrinsic-energy flow. A distance 

r will contain r/X0 analysis-cubes, and this allows us to find the displacement of the aether due to 

mass and extrinsic-energy flow at the edge of the sphere, PGF. If r is in the X direction, Eq. (302) 

leads to PGFX = (x/X0)X3X ≈ [KG1–KG2]Exi/4 + KF4FExi/4 with a similar equation for y. Eq. 

(303) relates that for Z there is no second term. We obtain 

PGF ≈ (xi + yj + zj)[KG1–KG2]E/4  + (xi + yj)KF4FE/4 = CMr + CF(xi + yj) (308) 

To simplify future manipulations Eq. (308) has made the following assignments: 

CM = [KG1–KG2]E/4 (309) 

CF = KF4FE/4 (310) 

(Notice that if we substitute Eq. (193), G = 3[KG1–KG2]E0/2, into Eq. (227), PGS = (G/60)r, 

we see that Eq. (227) becomes PGS = (G/60)r = ([KG1–KG2]E/4)r and hence the treatment here 

is consistent with section D.4.) 

If there is now an ambient attached-aether displacement PAG, PAG = PAGXi + PAGYj + PAGZk, then 

the total attached-aether displacement within the sphere becomes PG = PAG + PGF = [PAGX + (CM 

+ CF)x]i + [PAGY + (CM + CF)y]j + [PAGZ + CMz]k. The displacement of the attached-aether induced 

by the flowing extrinsic-energy (PGF) is purely longitudinal, and hence will only add to or subtract 

from the longitudinal ambient displacement, and therefore PAG is defined here as the longitudinal 

ambient displacement of PG. 
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Returning to Figure 16, within the strip, and using Eq. (225), the energy of a small positive-

attached-aether analysis-cube centered at x is: 

EPG(x,y,z) = KT0X0
2(1 – 4Kc

2KGC|PG|2/0
2) 

= KT0X0
2{1 – 4Kc

2KGC|[PAGX+(CM+CF)x]i + [PAGY+(CM+CF)y]j + [PAGZ+CMz]k|2/0
2} 

= KT0X0
2{1 – 4Kc

2KGC[PAGX
2 + 2PAGX(CM+CF)x + (CM+CF)2x2 + PAGY

2 + 2PAGY(CM+CF)y + 

(CM+CF)2y2 + PAGZ
2 + 2PAGZCMz + CM

2z2]/0
2} (311) 

In Eq. (311) the subscript PG is for the case where the flowing extrinsic-energy is immersed in 

positive-attached-aether. We can now find the force in the X direction that is present on the strip 

of flowing extrinsic-energy depicted in Fig. 16. For a small additional (and virtual) displacement 

x, the energy will become: 

EPG1(x+x,y,z) = KT0X0
2{1 – 4Kc

2KGC[PAGX
2 + 2PAGX(CM+CF)(x+x) + (CM+CF)2(x+x)2  

+ PAGY
2 + 2PAGY(CM+CF)y + (CM+CF)2y2 + PAGZ

2 + 2PAGZCMz + CM
2z2]/0

2} (312) 

In Eq. (312) the subscript 1 is for the case of a virtual displacement in the X direction. Subtracting 

Eq. (311) from Eq. (312) leaves the energy change resulting from the additional displacement: 

EGP1(x,y,z) = ΔEGP(x+x,y,z) – ΔEGP(x,y,z)  

= KT0X0
2{–4Kc

2KGC[2PAGX(CM+CF)x + (CM+CF)2(2xx+x2)]/0
2} (313) 

In the above expression we can drop the term that is second order in the small quantity x. We can 

now evaluate the force on the strip by considering the sum of all volume elements within the strip. 

We can drop the term proportional to 2xx because for every value of positive x on our strip there 

is a value of negative x of equal magnitude. The surviving term, which is proportional to 

2PAGX(CM+CF)x, is independent of x, y or z. Recalling that Eq. (313) refers to the change in 

energy for a small cube within the strip, we can form the relation for the force on the whole strip 

by summing over all of the analysis-cubes within the strip (strip is the symbol for that sum). The 
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volume of the strip is 2LΔyΔz, and therefore the number of analysis-cubes within the strip is 

2LΔyΔz/X0
3, and the magnitude of the force on the strip is 

FstripPGFX = strip {EPG1(x,y,z)/x} = [4KT0X0
2Kc

2KGC2PAGX(CM+CF)/0
2][2LΔyΔz/X0

3]  

= 16LΔyΔzKT0Kc
2KGCPAGX(CM+CF)/X00

2 (314) 

The force on the strip shown in Fig. 16 is proportional to the volume of the strip (2LΔyΔz) but 

independent of x, y and z. The sum of the volume of all of the strips will be the volume of the 

sphere, Vsphere. Hence, we can sum the forces from all such strips to arrive at: 

FspherePGFX = 8VsphereKT0Kc
2KGCPAGX(CM+CF)/X00

2 (315) 

Mass and flowing extrinsic-energy will also have an effect on negative-attached-aether. Both the 

ambient negative-attached-aether disturbance and the disturbance due to mass and flowing 

extrinsic-energy are the negative of what they are for the positive-attached-aether, NGF = –PGF and 

NAG = –PAG. We also see that Eq. (226), ENG = KT0X0
2(1 – 4Kc

2KGC|NG|2/0
2), coupled with NG = 

–PG from Eq. (211), shows that the force back on the sphere of flowing extrinsic-energy will be 

the same from each attached-aether component, FspherePGFX = FsphereNGFX. The total force magnitude 

is thus: 

FsphereGFX = FspherePGFX + FsphereNGFX = 16VsphereKT0Kc
2KGCPAGX(CM+CF)/X00

2 (316) 

Observe that the force is aligned with the direction of x in the above analysis, since the energy 

varies with x. Hence both FsphereGFX and PAGX are aligned with x. Inside the sphere shown in Fig. 

16 the total aetherial displacement PGLX increases in the direction of x as a result of the mass and 

flowing extrinsic-energy pushing the attached-aether out, and hence, the attached-aether will be 

forced in the direction of PAGX as lower energy is preferred. (Eq. (225), EPG = KT0X0
2(1 – 

4Kc
2KGC|PG|2/0

2) shows that larger values of PG lead to lower energy.) The force on the extrinsic-

energy will be in the opposite direction as the force on the positive-attached-aether. As mentioned 
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in section C.13, this can be thought of as analogous to pushing a ball downward through a tub of 

water: as the disturbance (the ball, or the extrinsic-energy) is forced down, the substance it is 

pushed through (the water, or the attached-aether) is forced in the opposite direction. Hence, the 

force on the extrinsic-energy (the ball) is in the direction opposite to that on PG (the water). (Similar 

comments apply to NG.) This leaves 

FsphereGFX = –16VsphereKT0Kc
2KGCPAGX(CM+CF)/X00

2 (317) 

We now recall Eq. (209), PGL – NGL = –0∇G/0, and recall PAGX = PGL and Eq. (211) NGL = –

PGL and hence PGL – NGL = 2PGL = 2PAGX = –0(∇G)x/0, or PAGX = –0(∇G)x/20, where here 

(∇G)x is the x component of ∇G. Thus we arrive at  

FsphereGFX = 8VsphereKT0Kc
2KGC0(∇G)x(CM+CF)/0X00

2 (318) 

Next, we will evaluate the force in the Z direction. For a small additional (and virtual) displacement 

z, the energy of Eq. (311) will become: 

EPG2(x,y,z+z) = KT0X0
2{1 – 4Kc

2KGC[PAGX
2 + 2PAGX(CM+CF)x + (CM+CF)2x2 + PAGY

2 + 

2PAGY(CM+CF)y + (CM+CF)2y2 + PAGZ
2 + 2PAGZCM(z+z) + CM

2(z+z)2]/0
2} (319) 

In Eq. (319) the subscript 2 is for case 2 which is our evaluation of force in the Z direction. 

Subtracting Eq. (311) from Eq. (319) leaves the energy change resulting from the additional 

displacement: 

EPG2(x,y,z) = EGP2(x,y,z+z) – EGP(x,y,z) =  

–KT0X0
24Kc

2KGC{2PAGZCMz + CM
2(2zz + z2)]/0

2} (320) 

In the above expression we can drop the term that is second order in the small quantity z. We can 

now evaluate the force on the strip by considering the sum of all volume elements within the strip. 

We can drop the term 2CM
2zz because for every value of positive z on our strip there is a value 

of negative z of equal magnitude. The surviving term, 2PAGZCMz, is independent of x, y or z. 
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Recalling that Eq. (320) refers to the change in energy for a small cube within the strip, we can 

form the relation for the force on the whole strip by summing over all of the analysis-cubes within 

the strip (strip is the symbol for that sum). The volume of the strip is 2LΔyΔz, and therefore the 

number of analysis-cubes within the strip is 2LΔyΔz/X0
3, and the force magnitude on the strip is 

FstripPGFZ = strip {EPG2(x,y,z)/z} = [4KT0X0
2Kc

2KGC2PAGZCM/0
2][2LΔyΔz/X0

3]  

= 16LΔyΔzKT0Kc
2KGCPAGZCM/X00

2 (321) 

The force on the strip shown in Fig. 16 is proportional to the volume of the strip (2LΔyΔz) but 

independent of x, y and z. The sum of the volume of all of the strips will be the volume of the 

sphere, Vsphere. Hence, we can sum the forces from all such strips to arrive at: 

FspherePGFZ = 8VsphereKT0Kc
2KGCPAGZCM/X00

2 (322) 

Mass and flowing extrinsic-energy will also have an effect on negative-attached-aether. Both the 

ambient negative-attached-aether disturbance and the disturbance due to mass and flowing 

extrinsic-energy are the negative of what they are for the positive-attached-aether, NGF = –PGF and 

NAG = –PAG. From Eq. (226), ENG = KT0X0
2(1 – 4Kc

2KGC|NG|2/0
2), coupled with NG = –PG from 

Eq. (211), we also see that the force back on the sphere of flowing extrinsic-energy will be the 

same from each attached-aether component, FspherePGFZ = FsphereNGFZ. The total force is thus: 

FsphereGFZ = FspherePGFZ + FsphereNGFZ = 16VsphereKT0Kc
2KGCPAGZCM/X00

2 (323) 

Observe that the force is aligned with the direction of z in the above analysis, since the energy 

varies with z. Hence both FsphereGFZ and PAGZ are aligned with z. Inside the sphere shown in Fig. 

16 the total aetherial displacement PGLZ increases in the direction of z as a result of the mass 

pushing the attached-aether out, and hence, the attached-aether will be forced in the direction of 

PAGZ as lower energy is preferred. (Eq. (225), EPG = KT0X0
2(1 – 4Kc

2KGC|PG|2/0
2) shows that 

larger values of PG lead to lower energy. While there is no flowing extrinsic-energy effect in the z 
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direction, the stationary extrinsic-energy remains.) The force on the extrinsic-energy will be in the 

opposite direction as the force on the positive-attached-aether. This leaves 

FsphereGFZ = –16VsphereKT0Kc
2KGCPAGZCM/X00

2 (324) 

We now recall Eq. (209), PGL – NGL = –0∇G/0, and recall PGL = PAGZ and Eq. (211) NGL = –

PGL and hence PGL – NGL = 2PGL = 2PAGZ = –0(∇G)z/0, or PAGZ = –0(∇G)z/20, where here 

(∇G)z is the z component of ∇G. Thus we arrive at  

FsphereGFZ = 8VsphereKT0Kc
2KGC0(∇G)zCM/0X00

2 (325) 

Next, we observe that the expression for FsphereGFY will follow the same derivation as that for 

FsphereGFX except with y taking the place of x. This leaves us with: 

FsphereGFY = 8VsphereKT0Kc
2KGC0(∇G)y(CM+CF)/0X00

2 (326) 

We can now combine Eqs. (318), (325) and (326) to arrive at the total force on the moving sphere 

of flowing extrinsic-energy 

FsphereGF = FsphereGFX + FsphereGFY + FsphereGFZ = 

8VsphereKT0Kc
2KGC0(∇G)x(CM+CF)/0X00

2 + 8VsphereKT0Kc
2KGC0(∇G)y(CM+CF)/0X00

2 + 

8VsphereKT0Kc
2KGC0(∇G)zCM/0X00

2 = 

(8VsphereKT0Kc
2KGC0/0X00

2){[(∇G)x+(∇G)y](CM+CF)] + (∇G)zCM} = 

 (8VsphereKT0Kc
2KGC0/0X00

2)[(CM+CF)∇G – CF(∇G)z]  (327) 

Now realize that we have chosen k = v̂ and hence (v̂ . ∇G) = |(∇G)z| and we arrive at: 

FsphereGF = (8VsphereKT0Kc
2KGC0/0X00

2)[(CM+CF)∇G – CF(v̂ . ∇G)v̂] (328) 

Now we will manipulate Eq. (328) to make for easy comparison with Eq. (237) of section D.4. 

Recall Eq. (193), G = 3[KG1–KG2]E0/2, from which, [KG1–KG2]E = 2G/30. Next recall Eq. 

(309), CM = [KG1–KG2]E/4, and hence CM = G/60. We then have [(CM+CF)∇G – CF(v̂ . ∇G)v̂] 

= CM[(1+CF/CM)∇G – (CF/CM)(v̂ . ∇G)v̂] = (G/60)[(1+CF/CM)∇G – (CF/CM)(v̂ . ∇G)v̂] Hence, 
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FsphereGF = (4VsphereGKT0Kc
2KGC0/30

2X00
2)[(1+CF/CM)∇G – (CF/CM)(v̂ . ∇G)v̂] (329) 

We also see that with CM = G/60, and with Eq. (310), CF = KF4FE/4, CF/CM = 3KF4FE0/2G, 

and with Eq. (193), G = 3[KG1–KG2]E0/2,  

CF/CM = KF4FE/[KG1–KG2]E (330) 

We now recall KT0 = 30
2X00

2/4Kc
20 from Eq. (141) and QG = KGCVsphereG from Eq. (236) to 

get 

FsphereGF = QG[(1+CF/CM)∇G – (CF/CM)(v̂ . ∇G)v̂] (331) 

Recall that Eq. (237) is FG = QG∇G, and we see that Eq. (331) reduces to (237) in the case where 

the energy flow density FE is zero (when FE is zero, CF is zero). 

D.16 – Bending of Starlight in a Gravitational Field; Setting KF4 

Eq. (331) can now be used to calculate the bending of starlight in the gravitational field of the sun. 

As a first step, with the sun treated as a stationary mass MSUN, Eq. (247) informs that ∇SUN from 

MSUN is ∇SUN = –(GSUNRSUN
3/3r20)r̂.  Then, with Eq. (193), G = 3[KG1–KG2]E0/2, ∇SUN = –

([KG1–KG2]ESUN0RSUN
3/2r20)r̂, and with SUNMSUNc2 = (4/3)RSUN

3ESUN, RSUN
3ESUN = 

3SUNMSUNc2/4, and  

∇SUN = –(3[KG1–KG2]SUNMSUNc20/8r20)r̂ (332) 

Next, the photon will be treated as a moving sphere of radius RPH and energy EPH. In this modeling, 

recalling Eq. (236), QG = KGCVsphereG, QGPH = KGC(4/3)RPH
3GPH = 2KGCRPH

3[KG1–KG2]EPH0 

where we again use Eq. (193). And with EPH = EPH/[(4/3)RPH
3], 

QGPH = 3KGC[KG1–KG2]EPH0/2 (333) 
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Combining Eqs. (332) and (333), ∇SUNQGPH = –(9KGC[KG1–KG2]2EPHSUNMSUNc20
2/16r20)r̂ 

and recalling Eq. (251), GN = 9KGC[KG1–KG2]20
2c4/160, this leaves us with ∇SUNQGPH = –

(GNEPHSUNMSUN/c2r2)r̂. Substituting this into Eq. (331) leaves: 

FGF_PH_SUN = –(GNEPHSUNMSUN/c2r2)[(1+CF/CM)r̂ – (CF/CM)(v̂ . r̂)v̂] (334) 

Now, recall Eq. (330), CF/CM = KF4FE/[KG1–KG2]E, and observe that FE and E refer to the 

photon in this case. (The photon is the small sphere within the attached-aether in Figs. 15 and 16; 

while the sun leads to ∇.) At this point in our development we must now define what is meant by 

“energy flow”; we have two obvious choices, and other choices exist as well. One choice is that 

energy flow is the kinetic energy (the energy of motion) with EFKE = EKEv̂ = ( – 1)Mc2v̂. (The 

subscript KE is for kinetic energy). The second choice for the energy flow is EFMO = Mc2v, which 

is the amount of total energy, Mc2, multiplied by the velocity v that the total energy flows with, 

and we notice that Mc2v is the momentum multiplied by c2. (The subscript MO is for momentum). 

If we take the first choice, for the photon, the kinetic energy equals the total energy, FEKE = EKE, 

so for a photon CFKE/CMKE = KF4KEFEKE/[KG1–KG2]EKE = KF4KE/[KG1–KG2]. This allows Eq. (334) 

to be rewritten as 

FGF_PH_SUN_KE =  

–(GNEPHSUNMSUN/c2r2)[(1 + KF4KE/[KG1–KG2])r̂ – (KF4KE/[KG1–KG2])(v̂ . r̂)v̂] (335) 

If we take the second choice, for the photon, the energy Mc2 equals the momentum times c, EMO 

= Mc2, and multiplying this by the light velocity c, FEMO = EMOc = Mc3, so for a photon 

CFMO/CMMO = KF4MOFEMO/[KG1–KG2]EMO = cKF4MO/[KG1–KG2]. This allows Eq. (334) to be 

rewritten as 
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FGF_PH_SUN_MO =  

–(GNEPHSUNMSUN/c2r2)[(1 + cKF4MO/[KG1–KG2])r̂ – (cKF4MO/[KG1–KG2])(v̂ . r̂)v̂] (336) 

We can now evaluate the force on the photon both parallel and perpendicular to r̂. For the parallel 

case, (v̂ . r̂) = 1 and v̂ = r̂, and Eqs. (335) and (336) each reduce to Newton’s Law of Universal 

Gravitation, Eq. (250), with EPH/c2 as the equivalent mass of the photon: 

FGF_PH_SUN_ PARALLEL = –(GNEPHSUNMSUN/c2r2 (337) 

Hence, for photons moving directly away from the sun, the effects of energy flow do not enter. 

This is of course obvious from the Extrinsic-Energy Flow Speculation, which relates that the 

energy flow only effects the aether in directions perpendicular to the flow. This is also why we 

were able to derive the gravitational redshift in section D.7 prior to any consideration of the energy 

flow effects. 

For the perpendicular case (v̂ . r̂) = 0 and Eq. (335) becomes: 

FGF_PH_SUN_KE_PERP = –(GNEPHSUNMSUN/c2r2)[(1 + KF4KE/[KG1–KG2])r̂ ] (338) 

Eq. (338) is a force that is the Newtonian force multiplied by a factor (1 + KF4KE/[KG1–KG2]), and 

it is famously known that experimental results of light bending around the sun show that this factor 

is 2. This allows us to set the constant KF4KE 

KF4KE = [KG1–KG2] (339) 

In a similar way, Eq. (336) becomes: 

FGF_PH_SUN_MO_PERP = –(GNEPHSUNMSUN/c2r2)[(1 + cKF4MO/[KG1–KG2])r̂] (340) 

Setting the factor (1 + cKF4MO/[KG1–KG2]) to 2 allows us to set the constant KF4MO 

KF4MO = [KG1–KG2]/c (341) 

Here we have presented two possible energy flow definitions that lead to a factor of two for the 

light bending around the sun. Other definitions are possible. In appendix I we will explore these 
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possibilities more under the assumption that the aether is at rest with respect to the cosmic 

background radiation. 

 

D.17 – Gravitational Slowing of Light: The Shapiro Effect and 

Assignment of Inertial-mass 

Rearrangement of Eq. (107), T0 = m0c2, leads to the expression c = (T0/m0)1/2 where T0 is the 

nominal aetherial tension per unit area and m0 is the inertial-mass density. We have seen that the 

tension can vary and we must also admit that the inertial-mass density may vary. This leads us to 

a more general expression for the speed of light 

VLIGHT = (T/m)1/2 (342) 

It remains to define T and m in Eq. (342). For the positive-aether case, Eq. (66) relates that FTPP = 

KT0X0[1 + 2Kcx/0]. We also see from Eq. (218) that the gamma-force tension component is FPT 

= 4Kc(1 + KGC)KT0(X0/0)xr̂. The gamma-force tension and nominal tension are in opposite 

directions, leaving the total tension per unit area for the positive aether as TP = (FTPP – FPT)/X0
2 = 

(KT0/X0)[1 + 2Kcx/0] – (KT0/X0)(1 + KGC)[4Kcx/0] = (KT0/X0)[1 – 2Kcx/0 – 4KGCKcx/0], or, 

TP = (KT0/X0)[1 – 2Kc|PG|/0 – 4KcKGC|PG|/0] (343) 

In Eq. (343) x = |PG|. (|PG| is the distance the aetherial cube moves from its nominal position due 

to gravitational effects. An electromagnetic effect can also exist, but it is typically neutralized 

while gravitational effects can accumulate.) 

For the negative-aether case, Eq. (G1) is FTN = KT0X0[1 – 2Kcx/0], while Eq. (G7) gives the 

gamma-force tension component FNT = 4KcKGCKT0(X0/0)xr̂. The gamma-force tension and 
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nominal tension are in opposite directions, leaving the total tension per unit area as TN = (FTN – 

FNT)/X0
2 = (KT0/X0)[1 – 2Kcx/0 – 4KGCKcx/0], or, 

TN = (KT0/X0)[1 – 2Kc|NG|/0 – 4KcKGC|NG|/0] (344) 

Since by Eq. (211) |NGL| = |PGL|, and also assuming |NGT| = |PGT| we can see that the tension per 

unit area T is the same for both the positive-aether and negative-aether cases. 

Turning now to the inertial-mass density m, we propose: 

The Aetherial Inertial-Mass Assignment: The aetherial inertial-mass density equals the field 

energy density plus the gravitational potential energy density divided by c2. 

The total field energy for the positive-attached-aether is given by Eq. (225), EPG = KT0X0
2(1 – 

4Kc
2KGC|PG|2/0

2), and for the negative-attached-aether it is given by Eq. (226) ENG = KT0X0
2(1 – 

4Kc
2KGC|NG|2/0

2), and with Eq. (211) |NGL| = |PGL|, and also assuming |NGT| = |PGT| we have EPG 

= ENG. To obtain the field energy densities we must of course divide by the volume of the analysis-

cube to arrive at EPG/X0
3.  

The gravitational potential energy density is the aetherial density 0 times the potential  and it is 

the same for both the negative and positive aether: 

EP = EN = 0 (345) 

From Eq. (246), SO = GSRS
3/3r0 – GSRS

2/20 and until now we have taken the gradient of SO 

for our quantities of interest. Since the gradient of a constant is zero we have so far been 

unconcerned with further setting of the constant. Now however we have a physical effect entering 

in and we must set the constant appropriately. We will apply the boundary condition that at infinity 

the gravitational potential is zero (so that objects sufficiently far away do not affect the aetherial 

inertial-mass). This leaves us with  = GSRS
3/3r0. Eq. (238) gives us GS = 3[KG1–KG2]ES0/2 = 

9[KG1–KG2]MSc20/8RS
3, so  = 3[KG1–KG2]MSc20/80r = K/0r, where we have defined  



 

152 
 

K = 3[KG1–KG2]MSc20
2/80 (346) 

We obtain 

EP = EN = 0 = K/r (347) 

Dimensional analysis. Below Eq. (271) we see that [KG1–KG2] has dimensions of kg-1 s2 m. 0 has 

dimensions of C divided by m3. 0 has dimensions m-3 kg-1 s4 A2. So we have K/r with units of 

(kg-1 s2 m) kg m2 s-2 (C2/m6)/(m-3 kg-1 s4 C2 s-2) m, which is kg m2 s-2 /m3, which is an energy 

density, as expected. 

Applying the aetherial inertial-mass assignment we now get an expression for the attached-aether 

inertial-mass m by adding the field energy density to the gravitational potential energy density: 

m = [(KT0/X0)(1 – 4Kc
2KGC|PG|2/0

2) + K/r]/c2 (348) 

We can now substitute Eqs. (343) and (348) into Eq. (342) to form the expression for the speed of 

light as it passes near the sun:  

VLIGHT =  (349) 

c{(KT0/X0)[1–2Kc|PG|/0–4KcKGC|PG|/0]/[(KT0/X0)(1–4Kc
2KGC|PG|2/0

2)+K/r]}1/2 

Near the sun we assume KT0/X0 >> K/r >> (KT0/X0)2Kc|P|/0 >> (KT0/X0)4Kc
2KGC|PG|2/0

2. (The 

assumption KT0/X0 >> K/r is verified in Section E below Eq. (369), and the remaining 

assumptions follow by assuming Kc is sufficiently small.) This allows us to drop the terms 

4Kc
2KGC|PG|2/0

2, 2Kc|P|/0 and 4KcKGC|PG|/0 from Eq. (349). This leaves us with VLIGHT = 

c{(KT0/X0)/[(KT0/X0)+K/r]}1/2 = c{1/[1+K/(KT0/X0)r]}1/2 or  

VLIGHT ≈ c[1 – K/2(KT0/X0)r]  (350) 

We can now use Eq. (350) to calculate the transit time of a photon between the earth and a planet.  

Figure 17 shows the geometry of relevance for the calculation. 
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Figure 17. Geometry of Relevance for Calculating the Shapiro Effect. 

In Figure 17, M is the planet Mercury, E is the earth and S is the sun. We will assume that the 

deflection of the light by the sun is small enough that we can consider the path to be predominantly 

along the x axis of the figure. We then have dx/dt = VLIGHT ≈ c[1 – K/2(KT0/X0)r], which for a 

small incremental spatial advance dx we can rearrange to dt ≈ (dx/c)[1 + K/2(KT0/X0)r]. From 

this, and noting that r = (x2+RMIN
2)1/2 all along the path, the time for light to go from Mercury to 

Earth is t = ∫ dt = (1/c) ∫ [1 + K/2(KT0/X0)(x2 + RMIN
2)1/2]dx,  and evaluating the integral, 

TME = x/c + (KX0/2cKT0)ln[(x2 + RMIN
2)1/2 + x]  (351) 

We can see that TME is the integral by differentiating it to find the integrand: dTME/dx = 1/c + 

(KX0/2cKT0){(1/ [(x2 + RMIN
2)1/2 + x]}(1 + (1/2)(x2 + RMIN

2)-1/22x) = 1/c + (KX0/2cKT0)[1 + x(x2 

+ RMIN
2)-1/2]/[(x2 + RMIN

2)1/2 + x]. Now [1+x(x2+RMIN
2)-1/2] = {[(x2+RMIN

2)1/2+x]/(x2+RMIN
2)1/2} so 

dTME/dx = 1/c + (KX0/2cKT0){[(x2+RMIN
2)1/2+x]/(x2+RMIN

2)1/2}/[(x2 + RMIN
2)1/2 + x] = 1/c + 

(KX0/2cKT0)/(x2+RMIN
2)1/2, which is the integrand. 

We now evaluate Eq. (351) between –XM and XE, TME = XE/c + (KX0/2cKT0)ln[(XE
2 + RMIN

2)1/2 

+ XE] – {–XM}/c – (KX0/2cKT0)ln[({–XM}2 + RMIN
2)1/2 – XM] = (XE + XM)/c + (KX0/2cKT0)ln[RE 
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+ XE] – (KX0/2cKT0)ln[RM – XM]. Here we have used (XE
2 + RMIN

2)1/2 = RE and (XM
2 + RMIN

2)1/2 

= RM. (XE + XM)/c is the nominal flight time. Hence the gravitational delay is 

TDELAY = (KX0/2cKT0)ln[(RE + XE)/(RM – XM)] (352) 

Eq. (352) is the same equation as that given by general relativity in the low field limit, which is in 

agreement with experimental data for all values of RMIN. We can now set Eq. (352) for the case 

when RMIN = RS, where RS is the radius of the sun, and include the factor of 2 for the round-trip 

delay: 

TSHAPIRO = (KX0/cKT0)ln{[(XE
2 + RS

2)1/2 + XE]/[(XM
2 + RS

2)1/2 – XM]} ≈ 200 s (353) 

Eq. (353) uses the terminology TSHAPIRO for the gravitational delay as it is presently called the 

Shapiro time delay. (Shapiro predicted the delay[14] as a result of the General Theory of 

Relativity.) The value of 200 s in Eq. (353) is that used in the original Shapiro prediction and it 

has been shown to be consistent with experiment up to the level of accuracy desired for our work 

here. (Here we are interested in the theoretical formulation of the equations as well as approximate 

evaluations of the constants; more exact specifications of the constants are of course welcome for 

future efforts.) 

 

D.18 – The Aetherial Gravitational Equation of Motion: Gravitational 

Waves 

Recall that for electromagnetism we have derived Eq. (104), m0(∂2P/∂t2) = T0∇2P – KF3JT, where 

m0(∂2P/∂t2) is the inertial-mass multiplied by the acceleration, T0∇2P is the tension force and KF3JT 

is the flow force. Following the same reasoning and derivation, for gravitational disturbances we 

get  

m(∂2PG/∂t2) = T0∇2PG + FGFP (354) 
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m(∂2NG/∂t2) = T0∇2NG + FGFN (355) 

In Eqs. (354) and (355) FGFP (FGFN) is the flow force on the positive (negative) attached-aether. 

In sections D.14 through D.16 we have only introduced a speculation for the gravitational flow 

force to arrive at the bending of light, and we have seen that more than one speculation may be 

consistent with experiment: we do not have enough experimental data to know the specific form 

of FGFP and FGFN. 

However, we notice that when the flow force is zero (as it is in free space) and when m = m0, we 

arrive at the same wave equation for both gravity and electromagnetism. The constants T0 and m0 

are the same for both gravitational and electromagnetic disturbances. Hence, provided FGFP = FGFN 

= 0 in free space, gravitational waves are predicted to exist and they will move with the velocity 

of light. 

Note that if we knew FGFP and FGFN we could derive a set of equations for gravitation similar to 

Maxwell’s equations, but there is no need to do so. The fundamental equations are Poisson’s 

Equation longitudinally and F = ma transversely for both gravity and electromagnetism. Due to 

the prevalence of Maxwell’s Equations within electromagnetism, we have provided derivations 

for them above. For gravitation there is no need to derive similar equations, as there are no 

prevailing equivalents of Maxwell’s Equations for gravity in the literature. 

 

E – Remaining Topics and Concluding Remarks 

E.1 – Identification of the Free Parameters 

In the work above we have introduced numerous constants, and we have made several assignments 

of those constants. In this section E.1 we will relate the constants to each other and refine the 
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expressions until we arrive at the remaining free parameters of the theory. Additionally, we will 

ensure that none of the assignments made above are in contradiction with each other. 

E.1.1. Relating the Analysis-Cube-Constants to the Aetherial-Quantum-Constants. 

We have defined four analysis-cube constants, X0, KT0, KQ0 and n. These constants are related to 

the aetherial quantum constants in a simple way. A special case of Eq. (10), XQ = Q/n, is  

n = 0/X0 (356) 

Next, we use Eq. (13), KT0 = KT0/n, and Eq. (14), KQ0 = KQ0/n5, along with Eq. (356) to obtain 

KT0 = KT0/n = KT0X0/0 (357) 

KQ0 = KQ0/n5 = KQ0(X0/0)5 (358) 

Or, 

KT0 = KT00/X0 (359) 

KQ0 = KQ0(0/X0)5 (360) 

And we can form 

KT0/X0 = KT0/0 (361) 

KQ0/X0
5 = KQ0/0

5 (362) 

Next, let us manipulate Eq. (7), 0 = (2KQ0/KT0)1/4, using Eqs. (359) and (360) 

0 = (2KQ0/KT0)1/4 = [2KQ0(0/X0)5/(KT00/X0)]1/4 = [2KQ0/KT0]1/4(0/X0) (363) 

From Eq. (363) we see 

X0 = [2KQ0/KT0]1/4 (364) 

E.1.2. Evaluating the Electromagnetic Flow Force Constants. 

Above we have introduced the electromagnetic flow force constants KF1, KF2 and KF3. Eq. (158), 

KF3
2 = 0T0 allows us to find KF3: 

KF3 = (0T0)1/2 (365) 
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Now recall Eq. (144), 0T0 = 2KF3KF1, which leads to KF1 = 0T0/2KF3 or, using Eq. (365) 

KF1 = (0T0)1/2/2 (366) 

Lastly, use Eq. (98), KF3 = KF2 – KF1, or KF2 = KF3 + KF1 to obtain 

KF2 = 3(0T0)1/2/2 (367) 

E.1.3. Manipulation of the Gravitational Constants. 

We have introduced six gravitational constants KG1, KG2, KG3, KG4, KG5 and KG6 as well as the 

constants K, Kc and KGC. There is also Newton’s gravitational constant which has a known value. 

These constants are related to each other, other constants, and numerical values via Eqs. (251), 

(264), (265), (267), (270), (276), (293), (346) and (353). In this section we will find useful relations 

by refining those equations. 

Three of the ten gravitational constants are already determined. Eq. (276) gives KG5 = 10-21 m-1. 

By Eq. (293) we have KG6 = 8.9167x10-28 m/kg. The known value of Newton’s gravitational 

constant is GN = 6.6743x10-11 Nm2/kg2. Next, we observe from Eq. (264) that KG3 = 4KT0Kc/0X0c2 

and using Eq. (361), KT0/X0 = KT0/0, KG3 = 4KT0Kc/0
2c2 so we see that KG3 is not a free 

parameter; it is a combination of other constants. Eq. (267), KG5 = KG3(3[KG1–KG2]c2/16), enables 

us to substitute in the value of KG3 from Eq. (264) and with KG5 = 10-21 m-1, KG5 = 

(4KT0Kc/0
2c2)3[KG1–KG2]c2/16 = 3KT0Kc[KG1–KG2]/40

2 = 10-21 m-1, or 

KG1–KG2 = 40
2x10-21 m-1/3KT0Kc (368) 

Next we use Eq. (270), KG6 = 9KG4[KG1–KG2]2c4/320, and substituting in Eq. (265), KG4 = 

4Kc
2KT0/X00

2c2 = 4Kc
2KT0/0

3c2 leaves KG6 = 9Kc
2KT0[KG1–KG2]2c2/800

3, and then 

substituting in Eq. (368), KG6 = 9Kc
2KT0[40

2x10-21 m-1/3KT0Kc]2c2/800
3 = 0x10-42 m-2 

c2/5KT0 = 8.9167x10-28 m/kg, where the last equality makes use of Eq. (293). Hence, 

KG6 = 0x10-42 m-2 c2/5KT0 = 8.9167x10-28 m/kg (369) 
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Next, we consider the gravitational flow constant KF4, which has two possible values as expressed 

in Eqs. (339) and (341) above: 

KF4KE = [KG1–KG2] (339) 

KF4MO = [KG1–KG2]/c (341) 

Recall now Eq. (353), TSHAPIRO = (KX0/cKT0)ln{[(XE
2 + RS

2)1/2 + XE]/[(XM
2 + RS

2)1/2 – XM]} ≈ 

200 s. With XM = 57.9 x 109 m, XE = 149.6 x 109 m and RS = 0.6963 x 109 m the value of the 

logarithm is ln{[(149.62 + 0.69632)1/2 + 149.6]/[(57.92 + 0.69632)1/2 – 57.9]} ≈ ln(71457) = 11.177. 

This leaves K ≈ cKT0 (200 s)/11.177X0 = (2.998×108 m/s)KT0(200 s)/11.177X0 , or 

K ≈ (5365 m) KT0/X0 (370) 

Eq. (370) shows that at the sun’s surface K/r = K/RS = (5365 m) KT0/[X0 (6.963×108 m)] and 

hence KT0/X0 >> K/RS, validating our assumption following Eq. (349) above. 

And now with Eq. (346), K = 3[KG1–KG2]MSc20
2/80, we get (5365 m) KT0/X0 = 3[KG1–

KG2]MSc20
2/80. Rearranging, KT0/0 = KT0/X0 = 3[KG1–KG2]MSc20

2/(5365 m)80, and we 

now substitute in Eq. (368), KG1–KG2 = 40
2x10-21 m-1/3KT0Kc, to get KT0/0 = 3[40

2x10-21 m-1/ 

3KT0Kc]MSc20
2/(5365 m)80, or KT0/0 = [2.967 x 10-26 m-20

2/KT0Kc]MSc20
2/0. With 0 

= 8.8542×10-12 m-3 kg-1 s4 A2 = 8.8542×10-12 m-3 kg-1 s2 C2, = 1, MS = 1.988x1030 kg and c = 

2.998x108 m/s this becomes KT0
2/0

2 = [2.967 x 10-26 m-20/Kc]1.988x1030 kg2.998x108 

m/s20
2/(8.8542×10-12 m-3 kg-1 s2 C2), or 

KT0
2/0

2 = (00
2/Kc)5.988x1032 m3 kg2 s-4 C-2 (371) 

Dimensional analysis. Kc is dimensionless and with 0 in C/m3 and 0 in m we see that the right-

hand side has units of m(C2/m6) m3 kg2 s-4 C-2 = (kg2/m2s4). KT00 is a force, which is in N, or kg-

m/s2. 0 is a length, so (KT0/0) has the units of kg/m-s2, and the dimensions are as expected. 
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Next we turn to Eq. (251), GN = 9KGC[KG1–KG2]20
2c4/160. Substituting in KG1–KG2 from Eq. 

(368), GN = 9KGC[40
2x10-21 m-1/3KT0Kc]20

2c4/160 = KGC[0
2x10-21 m-1/KT0Kc]20

2c4/0. 

Rearranging and taking the square root 0 = (GN0/KGC)1/2KT0Kc/{0
2c2x10-21 m-1}. Now GN = 

6.6743x10-11 Nm2/kg2 = 6.6743x10-11 m3/kg-s2, 0 = 8.8542×10-12 m-3 kg-1 s4 A2 = 8.8542×10-12 

m-3 kg-1 s2 C2 and hence GN0 = (6.6743x10-11 m3/kg-s2)(8.8542×10-12 m-3 kg-1 s2 C2) = 

1.857x10-21 C2/kg2, and (GN0)1/2 = 4.309x10-11 C/kg. Also, with c = 2.998x108 m/s, c x10-21m-1 

= [(2.998x108 m/s)2x10-21m-1] = 8.988x10-5 m/s2 And so we obtain 0 = {KT0Kc4.309x10-11 

C/kg}/{KGC
1/20

28.988x10-5 m/s2} or 

0 = [4.794x10-7 KT0Kc/0
2KGC

1/2] C s2/kg m (372) 

Dimensional analysis. Kc and KGC are dimensionless. KT00 is a force, which is in N, or kg m/s2. 

0 is a length, so KT0/0
2 has the units of kg/m2s2, and hence 0 described in Eq. (371) has the 

dimensions of (kg/m2s2)(C s2/kg m) = C/m3 as expected. 

E.1.4. Evaluating the Six Aetherial Quantum Constants.  

We have six constants associated with the aetherial quantum: 0, KQ0, KT0, T0, m0, and 0. These 

constants are related through Eqs. (7), (91), (107), (141) and (361). Hence, we will reduce these 

constants to relations involving at most a single free aetherial quantum constant, 0. 

To begin, recall Eq. (372) and square it:  

0
2
 = [2.298x10-13 KT0

2Kc
2/KGC0

4] C2 s4/kg2 m2 (373) 

Now use Eq. (141), KT0 = 30
2X00

2/4Kc
20, which, with Eq. (361), KT0/X0 = KT0/0, we can 

rewrite as KT0/X0 = KT0/0 = 30
20

2/4Kc
20. Then substitute in Eq. (373) to get KT0/0 = 

3([2.298x10-13 KT0
2Kc

2/KGC0
4] C2 s4/kg2 m2)0

2/4Kc
20 = 3([2.298x10-13 KT0

2/KGC0
2] C2 s4/kg2 
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m2)/40. With 0 = 8.8542×10-12 m-3 kg-1 s2 C2, and bringing KT0
2/KGC0

2 to the left side, this 

becomes KGC0/KT0 = (3x2.298x10-13 C2 s4/kg2 m2)/(4x8.8542×10-12 m-3 kg-1 s2 C2), or 

KGC0/KT0 = 1.947x10-2 m s2/kg (374) 

or 

KT0 = (51.36 kg/m-s2)0KGC (375) 

Now, to resolve KQ0, simply manipulate Eq. (7), 0 = (2KQ0/KT0)1/4, to get KQ0 = 0
4KT0/2, and 

using Eq. (375) we get 

KQ0 = (51.36 kg/m-s2)0
5KGC/2 = (25.68 kg/m-s2)0

5KGC (376) 

Next we use Eq. (91), T0 = KT0/X0, and with Eq. (361), KT0/X0 = KT0/0 we obtain T0 = KT0/0, 

and rearranging Eq. (375) to KT0/0 = (51.36 kg/m-s2)KGC, we have 

T0 = (51.36 kg/m-s2)KGC = 51.36 KGC N/m2  (377) 

And now we use Eq. (107), T0 = m0c2, to get m0 = T0/c2, and using Eq. (377) this is m0 = (51.36 

KGC N/m2)/(2.998x108 m/s)2 or 

m0 = 5.715x10-16 KGC kg/m3 (378) 

E.1.5. Expressing the Constants in their Reduced Forms. 

With the results obtained in the above sections, we can now list all of the constants in their reduced 

forms. First, we have the flow constants. Eq. (377) gives KF1 = (0T0)1/2/2, Eq. (367) gives KF2 = 

3(0T0)1/2/2 and Eq. (365) gives KF3 = (0T0)1/2. With Eq. (366), T0 = 51.36 KGC kg/m-s2, and with 

0 = 1.257 x10-6 m-kg-C-2, (0T0)1/2 = 8.034x10-3 KGC
1/2

 kg / s C and (0T0)1/2/2 = 4.017x10-3 KGC
1/2

 

kg / s C we are left with 

KF1 = (0T0)1/2/2 = 4.017x10-3 KGC
1/2 kg / s C (379) 

KF2 = 3(0T0)1/2/2 = 1.2051x10-2 KGC
1/2 kg / s C (380) 

KF3 = (0T0)1/2 = 8.034x10-3 KGC
1/2 kg / s C (381) 
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We now use Eq. (368), KG1–KG2 = 40
2x10-21 m-1/3KT0Kc and Eq. (375), KT0 = (51.36 kg/m-

s2)0KGC, to get KG1–KG2 = 40
2x10-21 m-1/3(51.36 kg/m-s2)0KGCKc or 

KG1–KG2 = (2.596x10-23 s2/kg)0/KGCKc  (382) 

From Eq. (264) KG3 = 4KT0Kc/0X0c2 and using Eq. (361), KT0/X0 = KT0/0, KG3 = 4KT0Kc/0
2c2 

and combining with Eq. (375), KT0 = (51.36 kg/m-s2)0KGC, we obtain KG3 = 4(51.36 kg/m-

s2)KGCKc/0c2, or 

KG3 = (205.5 kg/m-s2)KGCKc/0c2 (383) 

From Eq. (265), KG4 = 4Kc
2KT0/X00

2c2 and using Eq. (361), KT0/X0 = KT0/0, KG4 = 

4Kc
2KT0/0

3c2 and combining with Eq. (375), KT0 = (51.36 kg/m-s2)0KGC, we obtain KG4 = 

4Kc
2(51.36 kg/m-s2)KGC/0

2c2, or 

KG4 = (205.5 kg/m-s2)Kc
2KGC/0

2c2 (384) 

Above we have Eq. (339), KF4KE = [KG1–KG2], and Eq. (341), KF4MO = [KG1–KG2]/c, and using Eq. 

(382), KG1–KG2 = (2.596x10-23 s2/kg)0/KGCKc, these become: 

KF4KE = (2.596x10-23 s2/kg)0/KGCKc (385) 

KF4MO = (2.596x10-23 s2/kg)0/KGCKcc (386) 

Next we manipulate Eq. (370), K ≈ (5365 m) KT0/X0, by using Eq. (361), KT0/X0 = KT0/0, to get 

K ≈ (5365 m) KT0/0, and then use Eq. (375), KT0 = (51.36 kg/m-s2)0KGC, to get K ≈ (5365 m) 

(51.36 kg/m-s2)0KGC/0 or 

K ≈ 2.755x105 KGC kg/s2 (387) 

And now we gather some earlier evaluations of constants: 

KG5 ≈ 10-21 m-1 (276) 

KG6 = 8.9167x10-28 m/kg (293) 



 

162 
 

GN = 6.6743x10-11 Nm2/kg2 (251) 

KT0 = (51.36 kg/m-s2)0KGC (375) 

KQ0 = (51.36 kg/m-s2)0
5KGC/2 = (25.68 kg/m-s2)0

5KGC (376) 

T0 = (51.36 kg/m-s2)KGC = 51.36 KGC N/m2  (377) 

m0 = 5.715x10-16 KGC kg/m3 (378) 

 
And now take Eq. (372), 0 = [4.794x10-7 KT0Kc/0

2KGC
1/2] C s2/kg m, and then use Eq. (375), 

KT0 = (51.36 kg/m-s2)0KGC to obtain 0 = [4.794x10-7 (51.36 kg/m-s2)0KGC Kc/0
2KGC

1/2] C s2/kg 

m, or 

0 = (2.463x10-5 C/m2)KcKGC
1/2/0 (388) 

The analysis-cube constants are only used for our analysis and are not fundamental constants. 

Instead, we just divide up the aetherial quantum cube into n3 smaller analysis-cubes and have used 

n to obtain Eq. (10), XQ = Q/n, Eq. (13), KT0 = KT0/n and Eq. (14), KQ0 = KQ0/n5. 

We have also used several previously well-known fundamental physical constants: 

c = 2.998x108 m/s (389) 

0 = 8.8542x10-12 C2s2/kg-m3 (390) 

0 = 1.2566 x10-6 m-kg-C-2 (391) 

We see that none of the assignments have resulted in contradictions. At this point we now have 

only four free parameters remaining in the theory, KGC, Kc, KG1 and 0, as can be seen by looking 

at the numbered equations here in section E.1.5. (Eq. (382) gives us a relationship for KG1–KG2. 

Here we assign KG2 as the dependent variable and KG1 as the free parameter.) While n is technically 

a free parameter, it is merely an artifact of the analysis, not a fundamental constant. 
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E.1.6. A Determination of KG1 and KG2. 

It has been noted above in section D.3.5.1 that the two components of the gamma-force originate 

from the Extrinsic-Energy Force-Reduction Law, a law which is repeated here: 

The Extrinsic-Energy Force-Reduction Law. The presence of extrinsic-energy decreases the 

positive (negative) attached-aether tension and the negative (positive) attached-aether quantum-

force by an amount proportional to the amount of extrinsic-energy present with a constant of 

proportionality KG1 (KG2). 

Now recall Eqs. (218) and (219) 

FPT = 4Kc(1+ KGC)KT0(X0/0)xr̂ (218) 

FPQ = –4KcKGCKT0(X0/0)xr̂ (219) 

Also recall that FPT and FPQ act to reduce the tension and quantum-force, respectively. Hence, 

FPT and FPQ are the force reductions KG1 and KG2 of the Extrinsic-Energy Force-Reduction Law. 

We can form the ratio of the force reductions as KG1/KG2 = FPT/FPQ = (1+ KGC)/KGC = 1 + 1/KGC. 

This leads to 1/KGC = KG1/KG2 – 1 = (KG1 – KG2)/KG2 or KGC = KG2/(KG1 – KG2). Now, recall Eq. 

(382) KG1–KG2 = (2.596x10-23 s2/kg)0/KGCKc. Substituting KGC = KG2/(KG1 – KG2) into Eq. (382) 

leaves KG1–KG2 = (KG1–KG2)(2.596x10-23 s2/kg)0/KG2Kc, or  

KG2 = (2.596x10-23 s2/kg)0/Kc (392) 

We now rearrange Eq. (382) to get KG1 = (2.596x10-23 s2/kg)0/KGCKc + KG2. We then substitute 

in the expression for KG2 from Eq. (392) to get KG1 = (2.596x10-23 s2/kg)0/KGCKc + (2.596x10-23 

s2/kg)0/Kc, or 

KG1 = (2.596x10-23 s2/kg)0(1/KGCKc + 1/Kc) = (1 + 1/KGC)(2.596x10-23 s2/kg)0/Kc (393) 
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E.1.7. The New Parameters Needed by our Theory. 

Eqs. (392) and (393) express KG1 and KG2 in terms of 0, KGC and Kc. We now see that we have 

needed only three free parameters for our theory, the aetherial quantum size 0 and the two 

coupling parameters KGC and Kc. Here “free parameters” means those for which we have no 

estimated value. We have also needed two parameters with values that are (approximately) 

determined by experiment, KG5 and KG6. 

E.2 – Neutron Stars & Super Massive Objects (There are no Black Holes) 

Eqs. (276) and (293) give estimates of KG5 = 10-21 m-1 and KG6 = 8.9167 x 10-28 m/kg ≈ 9 x 10-28 

m/kg, respectively, which allows evaluation of Eq. (274), MEFF = M – 3KG5MR – 6KG6M2/R for 

various stellar objects of interest. (Here we are evaluating for M = 1.) As a first example consider 

MS and RS to be the mass and radius of the sun, respectively, MS ≈ 2 x 1030 kg, RS ≈ 7 x 108 m. 

We get MSEFF ≈ MS – 3KG5MSRS – 6KG6MS
2/RS = MS – (3x10-21 m-1x7x108 m)MS – [(6x9x10-28 

m/kg x2x1030 kg)/7x108 m]MS = MS – (2.1 x 10-12)MS – (1.54 x 10-5)MS, or 

MSEFF = MS – (1.54 x 10-5)MS (394) 

With Eq. (394) we see that our earlier approximations of MSEFF ≈ MS are valid. 

Now we’ll evaluate MEFF for a neutron star, with a radius of RN = 104 m and a mass of MN = 1.5 

MS ≈ 3 x 1030 kg. In this case, MNEFF = MN – 3KG5MNRN – 6KG6MN
2/RN = MN – (3x10-21 m-1x104 

m)MN – [(6x9x10-28 m/kg x3x1030 kg)/104 m]MN = MN – (3x10-17)MN – 1.62MN, or 

MNEFF ≈ MN – 1.62MN = –0.62MN (Under Overly Simplistic Assumptions) (395) 

Of course with a negative mass, Eq. (395) is untenable. This indicates that our present simplified 

treatment breaks down for the case of neutron stars. The reason for the failure of Eq. (395) to 

accurately handle the case of neutron stars is that the negative second-field-mass has now become 

large enough that it will significantly affect the determination of PGL. Thus far in our analysis 
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we’ve neglected the negative second-field-mass effect on PGL, and we see that neutron stars are 

out of scope for such an analysis. In Appendix J below we develop a treatment for hydrostatic 

equilibrium of stars that includes the effects of the negative second-field-mass. This treatment 

allows for an extension of our theory into the cases of neutron stars and other super dense objects. 

It is noteworthy that our theory differs from general relativity in that it does not have a singularity, 

and hence our theory has no black holes. Appendix J will show that super massive objects will 

instead be objects of a finite size. 

 

E.3 – Aetherial Speculations and a Proposed Experiment 

E.3.1. Speculations on the Aetherial Control. While theoretical physics advances are interesting 

in their own right, the goal of science is of course is to serve mankind and make lives better. 

Toward this aim, we wish not to simply understand our world, but also to control it. It is known 

that bodies moving through the aether experience clock retardation. If we can obtain the control 

necessary to move the aether past bodies (and generate an “aether wind”) we should be able to 

cause a clock retardation that way as well. Such an advance would have tremendous advantages, 

as we could put aetherial wind generators inside of ambulances to buy precious time for medical 

personnel, or, we could send patients to the future where cures or medical staff and treatments 

might be available. (Clock retardation is essentially travel of a clock forward in time.) Many other 

practical advances are possible. 

Also important would be the realm of travel. Since it is the aetherial dynamics that imposes the 

speed of light limit, if we have aetherial control we may be able to achieve travel at faster than the 

speed of light. 

Once we fully understand gravitation, we may also be able to control gravity. 
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However, while aetherial control would have tremendous promise, it may also prove difficult to 

achieve. Section E.3.5 discusses a first possible test aimed toward achieving aetherial control. 

 

 

E.3.2. Speculations on the Remaining Aetherial Parameters.  

A rather obvious speculation is that the positive-aether quanta are single positrons and that the 

negative-aether quanta are single electrons. From such a speculation we can derive relations 

relating the remaining aetherial parameters. Recall Eqs. (378) and (388): 

m0 = 5.715x10-16 KGC kg/m3 (378) 

0 = (2.463x10-5 C/m2)KcKGC
1/2/0 (388) 

With each aetherial quantum being an electron or a positron, it will contain a single charge of 

1.602x10-19 C, and the aetherial charge density will be 0 = 1.602x10-19 C/0
3. Setting that equal to 

the value given in Eq. (388) leads to 1.602x10-19 C/0
3

 = (2.463x10-5 C/m2)KcKGC
1/2/0, or  

KcKGC
1/20

2
 = (1.602x10-19 C)/(2.463x10-5 C/m2) = 6.504 x10-15 m2 (396) 

In our present speculation, each aetherial quantum has a mass equal to that of the electron and we 

obtain m0 = me/0
3 = 9.109x10-31 kg/0

3. Setting that equal to the value in Eq. (378) leads to 

9.109x10-31 kg/0
3 = 5.715x10-16 KGC kg/m3, or 

KGC = 9.109x10-31 kg/(5.715x10-160
3 kg/m3) = 1.594x10-15 m3/0

3 (397) 

Substituting (397) into (396), Kc(1.594x10-15 m3/0
3)1/20

2
 = 6.504 x10-15 m2, or 

Kc0
1/2

 = 6.504x10-15 m2/(1.594x10-15 m3)1/2
 = 1.629x10-7m1/2 (398) 

We have assumed Kc is small to get convergence of KT and KQ when analysis-cubes move (see 

Appendices F, G and H and portions of sections C and D) so let’s assume Kc = 1.629x10-5. In that 

case Eq. (398) leads to 0
1/2

 = 10-2 m1/2, or 0 = 10-4 m, and with that value Eq. (397) informs that 
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KGC = 1.594x10-3, which is small. (Notice that with Kc = 1.629x10-4 we obtain 0 = 10-6 m, and 

KGC = 1.594x103 is no longer small.) If 0 = 10-4 m and with each quantum containing a single 

charge, we could possibly isolate an aetherial volume. (See section E.3.5 below.) Under these 

assumptions we also have a charge density of 0 = 1.602x10-7 C/m3, a mass density of m0 = 

9.109x10-19 kg/m3 and recalling Eq. (377) we find a tension of T0 = 51.36 KGC N/m2 = (51.36 KGC 

N/m2)(1.594x10-3)(1 PSI/[6895 N/m2])=1.187x10-5 PSI. Note that water has a mass density of 103 

kg/m3. For these assumptions, the aether is vanishingly light and the tension quite small. 

However, if 0 = 10-4 m, then an atom is much smaller than 0, and the detached-aether inside the 

atom (the charges in the nucleus and electron cloud) have a much higher density than the attached-

aether, violating one of our assumptions above. Such a condition may exist, but then our analysis 

above will need modification in the near field. We’ll now look briefly at that issue. 

E.3.3. Derivation of Poisson’s Equation in the Near Field When the Detached-Aether density 

Exceeds the Attached-Aether Density.  

In section E.3.2 we assume that one aetherial quantum contains one electric charge, and therefore 

a bare proton contains one quantum of positive-detached-aether. The positive-detached-aether of 

the proton has a density far larger than the positive-attached-aether. To achieve neutrality, positive-

attached-aether will be repelled from, and negative-attached-aether attracted to, the region r < RP, 

where RP is the radius of the proton. (Here, the origin of our coordinate system is at the center of 

the proton.) We will now assume that the proton is a uniform sphere of charge for this analysis. 

We will divide the detached-aether of the proton up into spherical shells, each with a volume of 

4rD
2drD where rD is the distance from the center of the shell to the origin and drD is the thickness 

of the shell.  
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The total negative-attached-aether needed to neutralize the positive-detached-aether will be one 

quantum minus the amount of positive-attached-aether that leaves the proton. (Prior to the proton 

occupying the region, there is equality of the negative and positive attached-aether density in that 

region. When a proton enters the region it will expel some or all of the positive-attached-aether.) 

The amount of positive-attached-aether originally in the region r < RP is (RP/R0)3q0, where q0 is 

one quantum of aether and R0 is the radius of an undisturbed attached-aetherial sphere that 

contains one quantum of aether. Hence, the total negative-attached-aether needed to neutralize the 

proton’s detached-aether is q0[1 – f(RP/R0)3] where f is the fraction of positive-attached-aether 

that leaves the proton. This negative-attached-aether will come from the region between RP and 

some boundary radius RB. Before compression, the aether density within the region RP < r < RB is 

the undisturbed aether value of 0 = q0/(4/3)R0
3. This allows us to find RB, as we have q0[1 – 

f(RP/R0)3] = 0[(4/3)RB
3 – (4/3)RP

3] = [q0/(4/3)R0
3][(4/3)RB

3 – (4/3)RP
3] = [q0/R0

3][RB
3 – 

RP
3], or 1 – f(RP/R0)3 = RB

3/R0
3 – RP

3/R0
3, or 1 – f(RP/R0)3 + RP

3/R0
3 = RB

3/R0
3, or RB = R0[1 

– f(RP/R0)3 + RP
3/R0

3]1/3 = R0[1 + (1 – f)(RP/R0)3]1/3 ≈ R0[1 + (1 – f)(RP/R0)3/3]. We see that 

when all the positive-attached-aether leaves the proton, f = 1, we get RB = R0, and when none 

does f = 0, we get RB = R0[1 + (RP/R0)3/3]. 

The negative-attached-aether within the sphere of radius RB will be pulled into the proton, a sphere 

of radius RP. Each spherical shell originally within the sphere of radius RB will compress radially 

by the ratio of the spherical volumes, dR2 = dR1(RP/RB)3, and there is a similar compression in the 

transverse directions also. A thin, negative-attached-aether spherical shell originally just inside 

radius RB is pulled in to a radius just inside RP, and N(RP) = –(RB–RP) for that spherical shell. A 

negative-attached-aether spherical shell originally at radius gRB (where g is a variable between 0 
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and 1) is pulled in to a radius r = gRP, and N(r) = –g(RB–RP) for that spherical shell. Now, g is a 

variable that ranges from 0 to 1 as r ranges from 0 to RP, or g = r/RP, and hence we obtain 

N(r) = –[(RB–RP)/RP]r for r < RP (399) 

To evaluate N(r) in the region r > RP, we notice that any spherical shell will maintain its volume 

since there is no detached-aether in that region. We consider a spherical shell with inner radius RP 

and outer radius r. If we do a thought experiment wherein the proton is gradually removed, that 

shell will expand to an inner radius at RB and an outer radius RO determined by the shell volume. 

We will have (4/3)(r3–RP
3) for the volume of the shell when the proton is there and (4/3)(RO

3–

RB
3) when the proton is missing. Equating these, since the density is always constant outside of 

RP, (4/3)(r3–RP
3) = (4/3)(RO

3–RB
3), or r3 – RP

3 = RO
3 – RB

3, or RO
3 – r3 = RB

3 – RP
3. We also 

have N = RO – r, or RO = N + r. Substituting in we get (N + r)3 – r3 = N3 + 3N2r + 3Nr2 = RB
3 – 

RP
3. And now, since r >> N the higher order terms in N can be neglected and we obtain 

N(r) = –[( RB
3 – RP

3)/3r2]r̂ for r > RP (400) 

Inspection of Eqs. (399) and (400) shows that N(r) again obeys Poisson’s Equation. In this 

situation, N no longer equals –P, but Poisson’s Equation is obtained even in the near field. As long 

as the flow and tension forces are still described as in section C above, the derivation of Maxwell’s 

Equations and the Lorentz Force Equation should follow in the near field as well, although a more 

rigorous derivation of these matters should be undertaken. 

E.3.4. Comment on the Arbitrariness of the Assumptions of Section E.3.2.  

Of course in section E.3.2 the assumptions we make are quite arbitrary. It is entirely possible that 

the elemental aetherial quantum is not made of electrons and positrons and that the coupling 
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constant differs substantially from what is assumed here. In section E.3.2, we are just briefly 

exploring one possible parametric set for the aetherial constituents. 

E.3.5. A Possible Initial Experiment to Look for Aetherial Isolation.  

It may be possible to experimentally isolate a small volume of aether and do tests on it. Since we 

have identified detached-aether as electric charge, if we make two hollow beams, one of electrons 

and one of positrons, then the hollow region inside the beams may be isolated from the region 

outside the beams. This proposition follows provided the beams completely expel the ambient 

attached-aether in the regions they occupy while also detaching the attached-aether in the hollow 

region inside the beams from the attached-aether in the region outside of the beams. Next, the 

experiment should focus the beams so that the volume of the isolated attached-aether is in the 

shape of an American-football, pinching off the ends of the isolated aether. And then, the beams 

should be made to move that isolated aether by changing the focal points of the beams. It is desired 

that this focal change move the aether at a great speed, approaching that of light. Then, a beam of 

fast-decaying particles should be shot across the moving aether to determine if the moving aether 

causes a dilation in decay time of those particles. If the decay time is dilated, that would serve as 

proof that moving aether can be used to “send things to the future”. Of course, the more speculative 

benefits of such forward time travel identified in section E.3.1 would require considerable 

inventiveness before they will come to fruition. 

 

E.4 – The Precursor Works 

An earlier work [15] deriving Maxwell’s Equations laid foundations for some of the present work. 

Notably, the present work improves upon a weakness of the earlier work. (See Eqs. (116) through 

(119) above for the improved treatment.) 
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This work also builds upon other prior works of the author which show how we can once again 

understand our world by returning to physical models based on realist and absolute physics. The 

initial work on absolute theory [16] was concerned with a “special” absolute theory as an 

alternative to special relativity. The ABC Preon Model [17, 18] has shown how a realist physical 

model made up of three preons and three anti-preons can be used to model all known particles, 

providing an answer to the generational problem (why there are three generations of quarks and 

leptons) while also reducing the number of forces thought to exist. (The weak force is identified 

as a radioactive decay.) Another work [19] shows how an underlying philosophy of realism and 

absolute theory can be used to derive a new formulation of high velocity quantum mechanics 

equations. By returning to absolute theory we can easily understand all quantum behavior since 

instantaneous collapse of a real physical wave function is now allowed, unlike the situation 

required under relativity. Wave particle duality is understood as an instantaneous collapse of a 

wave of large physical size to one of smaller size. All of these advances are made possible by one 

simple step – a return to a philosophy of physical models, realism and absolute theory. That earlier 

philosophy, which included an aether, has been set aside for about a century because of the illusory 

simplicity of a philosophy of relativity. However, since the author’s works, including especially 

the present work, have shown that returning to the older philosophy leads to answers to the most 

significant open questions of physics, it should be clear that it is the philosophy of relativity that 

should be set aside. 
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Appendices. 

Appendices F, G and H contain derivations that are extremely similar to other derivations found 

in the main body of this work; these appendices are included here for completeness. Appendix I 

investigates issues related to the case where the sun is moving with respect to the aether. Appendix 

J contains analysis of dense stellar objects, and Appendix K contains some concluding thoughts. 

 

Appendix F – The Tension, Quantum-pressure and Delta-forces Within a 

Spherical Region Containing Unlike-Kind Detached-Aether. 

F.1. A Spherical Attached-Aether Region Containing Unlike-Kind Detached-Aether. 

Consider now the injection of a sphere of negative-detached-aether into the positive-attached-

aether. In this case, with PD = 0, Eq. (50) yields ∇ . P = –ND/20, which has the solutions  

PIN = –(ND/60)(xi + yj +zk) = –(ND/60)r (r < R0) (F1) 

POUT = –P0R0
2r̂/r2 (r > R0) (F2) 

In Eqs. (F1) and (F2) R0 is the radius of the sphere and P0 = (ND/60)R0 is the magnitude of P at 

R0. Verifying Eqs. (F1) and (F2) are solutions to Eq. (50): ∇ . PIN = (1/r2)∂(r2[(–ND/60)r])/∂r = 

(1/r2)∂[(–ND/60)r3]/∂r = –ND/20 and ∇ . POUT = (1/r2)∂(r2[–P0R0/r2])/∂r = –(1/r2)∂P0R0/∂r = 0.  

Notice that immersion into attached-aether of unlike-kind detached-aether will lead to an inward 

compression of the attached-aether. Since tension is a force directed inward, the radially-inward 

motion of the attached-aether will do negative work against the tension. And since the quantum-

pressure force is directed outward, the radially-inward motion of the attached-aether will do 

positive work against the quantum-pressure field. 
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F.2. The Tension-Force and Tension-Energy Inside a Spherical Attached-Aether Region 

Containing Unlike-Kind Detached-Aether. Eq. (F1) informs us that adding unlike-kind 

detached-aether into a spherical region will cause the attached-aether cubes within that region to 

compress equally in each cartesian direction. Focusing first on the tension, Eq. (15) informs us that 

a compression X of an analysis-cube leads to a tension-force magnitude FTP = KT0(X0–X) = 

KT0X0(1–X0/X0) within that analysis-cube. 

Consider cube-J, where J is some large integer with the center of cube-J separated from the center 

of the detached-aether-sphere by –(J–1)X0. The energy to displace cube-J is given by Eq. (32), 

WTD = (X0/0) Kc ∫ KTX0 dx, where now the displacement is (J–1)X, with X/2 coming from each 

of cubes 1 and J, and an additional X coming from each of the cubes between cube-1 and cube-

J. As a first order approximation, KT = KT0 and integrating Eq. (32) from 0 to (J–1)X, the work 

done against the tension on cube-J from the displacement is WTDJ = –(J–1)(X0/0)KcKT0X0X. 

(Compression means the cube originally at negative x moves in the positive direction. It moves 

(J–1)X, so that is the upper limit of integration, and the work is negative as the energy is relaxed.) 

Setting the expansion effects aside to focus on the effect of displacement, the tension-energy of 

cube-J is ET = ET0 + WTDJ = (1/2)KT0X0
2 – KcKT0X0

2(J–1)X/0. With ET = (1/2)KTX0
2, we arrive 

at the expression KT = KT0(1 – 2Kc(J–1)X/0). The tension-force remains FT = KTX0, but now KT 

includes the next order correction. As detached-aether is slowly injected, the center of the Jth cube 

will move a distance (J–1)X. At the beginning of the motion FTP is of course just KT0X0, and it is 

at the end that FTP = KT0X0[1 – 2Kc(J–1)X/0]. With x now defined as the deviation of the cube 

center from its nominal center (which varies from 0 to (J–1)X during the detached-aether 
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injection) and adding a subscript N for the Negative-detached-aether immersion, the full second-

order expression for tension-force in the analysis-cube is  

FTPN = KT0X0[1 – 2Kcx/0] (F3) 

Eq. (F3) is seen to be the nominal value of KT0X0 when there is no injected detached-aether (and 

x = 0), and KT0X0[1 – 2Kc(J–1)X/0] when we reach full injection (and x = (J–1)X). The linearity 

follows because X (and hence (J–1)X) is linear with the amount of detached-aether injected. 

With the second-order expression for the tension just derived, we can now include the second-

order effect on the cube tension-energy. Eq. (32) gives the work done on the field by the cube 

displacement as WTDJ = –(X0/0) Kc ∫ FTP dx = –KcKT0X0(X0/0) ∫ [1–2Kcx/0] dx = –

KcKT0X0(X0/0)x + Kc
2KT0(X0/0)2x2 = – KcKT0X0(X0/0)(J–1)X + Kc

2KT0(X0/0)2(J–1)2X2 = –

KcKT0X0(X0/0)P + Kc
2KT0(X0/0)2P2. (For the displacement, the integral is evaluated between zero 

and its final displacement (J–1)X = P.)  

The compression energy is now calculated by including a minus sign in Eq. (63) since compression 

will release energy from the tension, WTC = –2 ∫ KTX0 dw. From Eq. (F3), FTPN = KT0X0[1 – 

2Kcx/0]. We now use Eq. (62), x = (PX)w, to obtain KTX0 = KT0X0[1–2Kc(P/X)w/0]. As 

specified in Eq. (63) we integrate from w = 0 to w = X/2. Hence WTC1 = –2 ∫ KTX0 dw = –2KT0X0 

∫ [1–2Kc(P/X)w/0] dw = –2KT0X0w + 2KT0X0Kc(P/X)w2/0 = –KT0X0X + KT0X0KcPX/20. 

Recall that Eq. (63) is for one dimension only, and that inside the sphere the compression will be 

the same in all three dimensions. Hence, WTC3 = –3KT0X0X + 3KT0X0KcPX/20. The total 

tension-energy of an arbitrary analysis-cube inside the spherical region is the undisturbed energy 

plus the displacement energy plus the compression energy, ETPNI = (1/2)KT0X0
2 – KcKT0X0(X0/0)P 

+ Kc
2KT0(X0/0)2P2 – 3KT0X0X + 3KT0X0KcPX/20, or, ETPNI = KT0X0

2[(1/2) – KcP/0 + 
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Kc
2(P/0)2 – 3X/X0 + 3KcPX/2X00]. Here we have derived the force for positive P. For P at any 

angle we get the same value, so we will replace P by its absolute value, |P|: 

ETPNI = KT0X0
2[(1/2) – Kc|P|/0 + Kc

2(|P|/0)2 – 3X/X0 + 3Kc|P|X/2X00] (F4) 

In Eq. (F4) and the above paragraph, the subscript TPNI refers to Tension of the Positive-attached-

aether due to immersed Negative-detached-aether in the Inside region of the sphere. 

F.3. The Quantum-Force and Quantum-Energy Fields Inside a Spherical Attached-Aether 

Region Containing Unlike-Kind Detached-Aether. When slowly adding unlike-kind detached-

aether into a spherical volume, the compression of the attached-aether will lead to an increased 

quantum-force and the displacement of any cube within the spherical region will do work against 

the quantum-force-field as given in Eq. (33), WQD = (X0/0) Kc
 ∫ 2KQ/X0

3 dx. In this case, WQD is 

positive, since the displacement caused by compression will result in an increase of the quantum-

energy. As a first-order approximation, we use a quantum-force of FQ = FQ0 = 2KQ0/X0
3. With the 

displacement of (J–1)X, the work to displace cube-J is WQDJ = Kc(X0/0)[2KQ0(J–1)X/X0
3].  

Setting the expansion effects aside to focus on the effect of displacement, the quantum-energy of 

cube-J is EQ = EQ0 + WQDJ = KQ0/X0
2 + (X0/0)[2(J–1)KcKQ0/X0

3]X = (KQ0/X0
2)(1 + 2Kc(J–

1)X/0). With EQ = KQ/X0
2, we arrive at the expression KQ = KQ0(1 + 2Kc(J–1)X/0). The 

quantum-force remains FQ = 2KQ/X0
3, but now KQ includes the next order correction. As detached-

aether is slowly injected, the center of the Jth cube will move a distance (J–1)X. At the beginning 

of the motion FQP is of course just 2KQ0/X0
3, and it is at the end that FQP = (2KQ0/X0

3)[1 + 2Kc(J–

1)X/0]. Again defining x as the deviation of the cube center from its nominal center (x varies 

from 0 to (J–1)X during the detached-aether injection) the full expression for the quantum-force 

in the analysis-cube is  

FQPN = (2KQ0/X0
3)[1 + 2Kcx/0] (F5) 
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With the expression for the second-order quantum-force just derived, we can now include the 

second order effect on the cube quantum-energy. The work done on the quantum-force-field due 

to the cube displacement is WQDJ = (X0/0)Kc ∫ FQdx = Kc(X0/0)(2KQ0/X0
3) ∫ [1+2Kcx/0]dx = 

Kc(2KQ0/X0
20)x + Kc

2(2KQ0/X0
20

2)x2 = Kc(2KQ0/X0
20)(J–1)X + Kc

2(2KQ0/X0
20

2)(J–1)2X2 = 

Kc(2KQ0/X0
20)P + Kc

2(2KQ0/X0
20

2)P2. (For the displacement, the integral is evaluated between 

zero and (J–1)X = P.)  

The compression energy is calculated using Eq. (64) and with a positive sign, since compression 

will do work against the quantum-pressure, WQC = 4 ∫ KQ/X0
3 dw. From Eq. (F5), FQPN = 

(2KQ0/X0
3)[1 + 2Kcx/0]. We now use Eq. (62), x = (PX)w, to obtain FQPN/2 = KQ/X0

3 = 

(KQ0/X0
3)[1+2Kc(P/X)w/0]. As specified in Eq. (64) we integrate from w = 0 to w = X/2. Hence 

WQC1 = 4 ∫ KQ/X0
3 dw = 4(KQ/X0

3) ∫ [1+2Kc(P/X)w/0] dw = 4(KQ0/X0
3)w + 

4(KQ0/X0
3)Kc(P/X)w2/0 = 2(KQ0/X0

3)X + (KQ0/X0
3)KcPX/0. Recall that Eq. (64) is for one 

dimension only, and that inside the sphere the compression will be the same in all three dimensions. 

Hence, WQC3 = 6(KQ0/X0
3)X + 3(KQ0/X0

3)KcPX/0. The total quantum-energy of an arbitrary 

analysis-cube inside the spherical region is the undisturbed energy plus the displacement energy 

plus the compression energy, EQPNI = KQ0/X0
2 + Kc(2KQ0/X0

20)P + Kc
2(2KQ0/X0

20
2)P2 + 

6(KQ0/X0
3)X + 3(KQ0/X0

3)KcPX/0, or, EQPNI = 2KQ0/X0
2[(1/2) + KcP/0 + Kc

2(P/0)2 + 3X/X0 

+ 3KcPX/2X00]. Here we have derived the force for positive P. For P at any angle the work done 

is same, so we will replace P by its absolute value, |P|: 

EQPNI = (2KQ0/X0
2)[(1/2) + Kc|P|/0 + Kc

2|P|2/0
2 + 3X/X0 + 3Kc|P|X/2X00] (F6) 

F.4. The Delta-Force and Delta-Energy Fields Inside a Spherical Attached-Aether Region 

Containing Unlike-Kind Detached-Aether. Injection of detached-aether causes unlike-kind 
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attached-aether to compress leading to the forces described in Eqs. (F3) and (F5), FTPN = KT0X0[1 

– 2Kcx/0] and FQPN = (2KQ0/X0
3)[1 + 2Kcx/0], respectively. In order to achieve a force balance 

within the attached-aether, it has been proposed in section C.3 that presence of detached-aether 

leads to a balancing force called the delta-force obeying Eq. (59), F = –FTL – FQ. At this point 

recall that the tension is directed inward (toward the center of the sphere) while the quantum-force 

is directed outward and F opposes them to arrive at F = KT0X0[1 – 2Kcx/0]r̂ – (2KQ0/X0
3)[1 + 

2Kcx/0]r̂. And now recall Eq. (21), KT0X0 = 2KQ0/X0
3, leaving F = KT0X0[1 – 2Kcx/0 – 1 – 

2Kcx/0]r̂, or,  

FPN = –4KcKT0(X0/0)xr̂ (F7) 

The delta-force FPN of Eq. (F7) is the total force on the area of the cube-face, like the tension and 

quantum-pressure forces of Eqs. (F3) and (F5), respectively. The work done on the delta-field due 

to the cube displacement is calculated from Eq. (32) as WPNI = (X0/0) Kc ∫ FPN dx, and 

substituting in Eq. (F7) we obtain WPNI = (X0/0) Kc ∫ 4KT0Kc(X0/0)x dx = 2KT0Kc
2(X0/0)2x2 = 

2KT0Kc
2(X0/0)2P2. (For the displacement, the integral is evaluated between zero and P. For the 

sign of the energy see section C.3.10.) 

The radial compression energy is now calculated by using Eq. (65), WC = 2 ∫ F dw. We now use 

Eq. (62), x = (PX)w and use a negative sign since compression will decrease the delta-tension 

energy to obtain F = –4KT0KcX0(P/X)w/0. (Since the quantum-force exceeds the tension, the 

delta-force is a tension in this case, see section F.7.1.) As specified in Eq. (65) we integrate from 

w = 0 to w = X/2. Hence WC1 = –2 ∫ 4KT0KcX0(P/X)w/0 dw = –4KT0X0Kc(P/X)w2/0 = –

KT0X0KcPX/0. Recall that Eq. (65) is for one dimension only. Hence, WC3 = –3KT0X0KcPX/0.  
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The total delta-energy of an arbitrary analysis-cube inside the spherical region is the displacement 

energy plus the compression energy, EPNI = 2KT0Kc
2(X0/0)2P2 – 3KT0X0KcPX/0. The 

calculation will hold for any angle so we can replace P by |P|, and therefore summing the 

displacement and expansion energies leaves 

EPNI = 2KT0Kc
2(X0/0)2|P|2 – 3KT0X0Kc|P|X/0 (F8) 

F.5. The Total Energy Inside a Spherical Attached-Aether Region Containing Like-Kind 

Detached-Aether. The total energy of the analysis-cube is found by summing the tension, 

quantum and delta energies from Eqs. (F4), (F6) and (F8). EPNI = ETPNI + EQPNI + EPNI = 

KT0X0
2[(1/2) – Kc|P|/0 + Kc

2|P|2/0
2 – 3X/X0 + 3Kc|P|X/2X00] + (2KQ0/X0

2)[(1/2) + Kc|P|/0 + 

Kc
2|P|2/0

2 + 3X/X0 + 3Kc|P|X/2X00] + 2KT0Kc
2(X0/0)2|P|2 – 3KT0X0Kc|P|X/0. Next, use Eq. 

(22), KT0X0
2 = 2KQ0/X0

2, to get EPNI = KT0X0
2[1 + 4Kc

2(P2/0)2].  

We see that we have once again arrived at Eq. (72), EP = KT0X0
2[1 + 4Kc

2(P2/0)2], and therefore 

we need no second subscript on EP in Eq. (72). 

F.6. The Force and Energy Fields Outside a Spherical Attached-Aether Region Containing 

Unlike-Kind Detached-Aether. Outside of the sphere Eq. (F2) informs us that the analysis-cubes 

will be expanded radially, rather than compressed. A spherical shell originally located a distance 

r from the center of the sphere with thickness dr is pulled inward by a distance PR. Since there is 

no detached-aether outside of the sphere, the density is a constant 0 there and hence the volume 

of the shell remains constant during its inward displacement. With drP the shell thickness after it 

is displaced by PR, volume invariance results in 4r2dr = 4(r–PR)2drP, or drP/dr = r2/(r–PR)2 = 

r2/[r2(1–PR/r)2] ≈ 1 + 2PR/r. Now Eq. (F2) gives PR = P0R0
2/r2, and therefore drP/dr ≈ 1 + 2P0R0

2/r3, 

or drP ≈ dr + 2drP0R0
2/r3. This results in the amount of expansion being rP = drP – dr ≈ 2drP0R0

2/r3, 

where dr can be any small radial distance. Assigning dr to the size of an analysis-cube, dr = X0, 
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we obtain the expansion of the analysis-cubes, X = 2X0P0R0
2/r3. At the edge of the sphere, the 

analysis-cubes are displaced radially inward by P0 and the expansion will gradually lower the 

displacement of the more distant cubes to the displacement PR = P0R0
2/r2 given by Eq. (F2). In this 

case, all cubes are still displaced in the inward direction however, and so the tension-force-field is 

decreased, it is just that the amount of decrease falls off with r. 

In the directions perpendicular to r the cubes will compress. The area of each spherical shell 

decreases to A = 4(r–PR)2 from its original 4r2. We have (r–PR)2/r2 = (1–PR/r)2 ≈ 1–2PR/r, and 

we can see that the relative area compression is A/A = 2PR/r. Now we form A = Y2 for our cubes 

and we see A/Y = 2Y, leading to (A/Y)/A = (2Y)/Y2, or A/A = 2Y/Y and hence Y/Y = 

PR/r. Therefore a cube of size Y = X0 will compress by Y = X0PR/r = X0P0R0
2/r3, or Y = X/2, 

which is Eq. (73). 

Now consider cube-P, a cube that is displaced by a distance P. Integrating Eq. (32), WTD = (X0/0) 

Kc ∫ KTX0 dx, from 0 to P, the first-order work (against the first-order force FTP = KT0X0) done 

against the tension on cube-P from the displacement is WTDP = –(X0/0)KcKT0X0P. 

Setting the expansion effects aside to focus on the effect of displacement, the tension-energy of 

cube-P is ET = ET0 + WTDP = (1/2)KT0X0
2 – KcKT0X0

2P/0. With ET = (1/2)KTX0
2, we arrive at the 

expression KT = KT0(1 – 2KcP/0). The tension-force remains FT = KTX0, but now KT includes the 

next order correction. As detached-aether is slowly injected, the center of the Pth cube will move 

a distance P. At the beginning of the motion FTP is of course just KT0X0, and it is at the end that 

FTP = KT0X0[1 – 2KcP/0]. With x now defined as the deviation of the cube center from its nominal 

center (which varies from 0 to P during the detached-aether injection) the full expression for 

tension-force in the analysis-cube is again given by Eq. (F3), FTPN = KT0X0[1 – 2Kcx/0]. 
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The second-order effect on the cube tension-energy due to the cube displacement is now included 

by integrating Eq. (32) from 0 to P, WTD = –(X0/0) Kc ∫ FTPN dx = –Kc(X0/0)KT0X0 ∫ [1–2Kcx/0] 

dx = –Kc(X0/0)KT0X0x + Kc
2(X0/0)2KT0x2 = –KcKT0X0

2P/0 + Kc
2KT0P2X0

2/0
2.  

The expansion energy is now calculated by Eq. (63) since expansion will increase the tension 

energy, WTC = 2 ∫ KTX0 dw. From Eq. (F3), FTPN = KT0X0[1 – 2Kcx/0]. We now use Eq. (62), x 

= (PX)w, to obtain KTX0 = KT0X0[1–2Kc(P/X)w/0]. As specified in Eq. (63) we integrate from 

w = 0 to w = X/2. Hence WTC1 = 2 ∫ KTX0 dw = 2KT0X0 ∫ [1–2Kc(P/X)w/0] dw = 2KT0X0w – 

2KT0X0Kc(P/X)w2/0 = KT0X0X – KT0X0KcPX/20.  

Recall that Eq. (63) is for one dimension only. Eq. (73) informs that outside the sphere there is a 

compression Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Since it is a compression we release some tension and 

our signs are reversed. For each transverse dimension then we obtain WTC2 = –2KT0X0w + 

2KT0X0Kc(P/X)w2/0 = –KT0X0X/2 + KT0X0Kc(P/X)X2/80, and the total compression energy 

will be twice that, since there are two dimensions. Hence, WTC3 = WTC1 + 2WTC2 = KT0X0X – 

KT0X0KcPX/20 – KT0X0X + KT0X0KcPX/40 = –KT0X0KcPX/40. The total tension-energy 

of an arbitrary analysis-cube outside the spherical region is the undisturbed energy plus the 

displacement energy plus the expansion energy, ETPNO = (1/2)KT0X0
2 – KcKT0X0

2P/0 + 

Kc
2KT0P2X0

2/0
2 – KT0X0KcPX/40, or, ETPNO = KT0X0

2[(1/2) – KcP/0 + Kc
2(P/0)2 – 

KcPX/4X00]. Here we have derived the force for positive P. For P at any angle the work done is 

the same. Hence we will replace P by its absolute value, |P|: 

ETPNO = KT0X0
2[(1/2) – Kc|P|/0 + Kc

2(|P|/0)2 – Kc|P|X/4X00] (F9) 
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In Eq. (F9) and the above paragraph, the subscript TPNO refers to Tension of the Positive-

attached-aether due to immersed Negative-detached-aether in the region Outside of the sphere. 

Turning to the quantum-field, the work done on cube-P during displacement is given by Eq. (33), 

WQD = (X0/0) Kc ∫ 2KQ/X0
3 dx, and here the displacement is P and the first-order force parameter 

is KQ0, leaving WQDP = 2KcPKQ0/X0
20. Setting the expansion effects aside to focus on the effect 

of displacement, the quantum-energy of cube-P is EQ = EQ0 + WQDP = KQ0/X0
2 + 

(X0/0)[2PKcKQ0/X0
3] = (KQ0/X0

2)(1 + 2KcP/0). With EQ = KQ/X0
2, we arrive at the expression 

KQ = KQ0(1 + 2KcP/0). The quantum-force remains FQ = 2KQ/X0
3, but now KQ includes the next 

order correction. As detached-aether is slowly injected, the center of the Pth cube will move a 

distance P. At the beginning of the motion FQP is of course just 2KQ0/X0
3, and it is at the end that 

FQP = (2KQ0/X0
3)[1 + 2KcP/0]. With x again defined as the deviation of the cube center from its 

nominal center (which varies from 0 to P during the detached-aether injection) the full expression 

for the quantum-force in the analysis-cube is again given by Eq. (F5), FQPN = (2KQ0/X0
3)[1 + 

2Kcx/0]. Including the second order effect on the cube quantum-energy due to the cube 

displacement, WQDP = (X0/0)Kc ∫ (2KQ0/X0
3)[1+2Kcx/0] dx = (2KcKQ0/X0

20)x + 

(2Kc
2KQ0/X0

20
2)x2 = (2KcKQ0/X0

20)P + (2Kc
2KQ0/X0

20
2)P2. 

The radial expansion energy is now calculated by Eq. (64), and since expansion will decrease the 

quantum-energy, WQC = –4 ∫ KQ/X0
3 dw. From Eq. (F5), FQPN = (2KQ0/X0

3)[1 + 2Kcx/0]. We now 

use Eq. (62), x = (PX)w, to obtain KQ/X0
3 = (KQ0/X0

3)[1+2Kc(P/X)w/0]. As specified in Eq. 

(64) we integrate from w = 0 to w = X/2. Hence WQC1 = –4 ∫ KQ/X0
3 dw = –4(KQ0/X0

3) ∫ 

[1+2Kc(P/X)w/0] dw = –4(KQ0/X0
3)w – 4(KQ0/X0

3)Kc(P/X)w2/0 = –2(KQ0/X0
3)X – 

(KQ0/X0
3)KcPX/0.  
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Recall that Eq. (64) is for one dimension only. Eq. (73) informs that outside the sphere there is a 

compression Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Since it is a compression we increase the quantum-

force and our signs are positive. For each transverse dimension then we obtain WQC2 = 

4(KQ0/X0
3)w + 4(KQ0/X0

3)Kc(P/X)w2/0 = (KQ0/X0
3)X + (KQ0/X0

3)KcPX/40, and the total 

compression energy will be twice that, since there are two dimensions. Hence, the full three 

dimension effect is WQC3 = WQC1 + 2WQC2 = –2(KQ0/X0
3)X – (KQ0/X0

3)KcPX/0 + 2(KQ0/X0
3)X 

+ (KQ0/X0
3)KcPX/20 = –(KQ0/X0

3)KcPX/20. The total quantum-energy of an arbitrary analysis-

cube outside the spherical region is the undisturbed energy plus the displacement energy plus the 

expansion energy, EQPNO = KQ0/X0
2 + (2KcKQ0/X0

20)P + (2Kc
2KQ0/X0

20
2)P2 – 

(KQ0/X0
3)KcPX/20, or, EQPNO = (2KQ0/X0

2)[(1/2) + KcP/0 + Kc
2(P/0)2 – KcPX/4X00]. Here 

we have derived the force for positive P. For P at any angle the work done is the same. Hence we 

will replace P by its absolute value, |P|: 

EQPNO = (2KQ0/X0
2)[(1/2) + Kc|P|/0 + Kc

2(|P|/0)2 – Kc|P|X/4X00] (F10) 

In Eq. (F10) and the above paragraph, the subscript QPNO refers to Quantum-pressure of the 

Positive-attached-aether due to immersed Negative-detached-aether in the region Outside of the 

sphere. 

For the delta-energy, since Eqs. (F3) and (F5) are the same both inside and outside of the spherical 

region, Eq. (F7), FPN = –4KcKT0(X0/0)xr̂, holds both inside and outside as well. For the 

displacement energy we use Eq. (32), WTD = (X0/0)Kc ∫ FPN dx = (X0/0)Kc ∫ 4KcKT0(X0/0)x dx 

= 2Kc
2KT0(X0/0)2x2, and evaluating at P leaves WTDN = 2Kc

2KT0(X0/0)2P2. (For the sign of the 

energy, see section C.3.10.)  
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The radial expansion energy is now calculated by using Eq. (65), WC = 2 ∫ F dw. We now use Eq. 

(62), x = (PX)w and use a positive sign since expansion will increase the delta energy (it is a 

tension) to obtain FPN = 4KT0KcX0(P/X)w/0. As specified in Eq. (65) we integrate from w = 0 

to w = X/2. Hence WC1 = 2 ∫ 4KT0KcX0(P/X)w/0 dw = 4KT0X0Kc(P/X)w2/0 = 

KT0X0KcPX/0. Recall that Eq. (65) is for one dimension only. Eq. (73) informs that outside the 

sphere there is a compression Y = X/2 for each of the other two dimensions and for those 

dimensions we integrate from 0 to Y/2, which is equal to 0 to X/4. Also, since it is a compression 

the tension will decrease and our signs are negative. For each transverse dimension then we obtain 

WC2 = –4KT0X0Kc(P/X)w2/0 = –KT0X0KcPX/40, and the total compression energy will be 

twice that, since there are two dimensions. Hence, WP3 = WP1 + 2WP2 = KT0X0KcPX/0 – 

KT0X0KcPX/20 = KT0X0KcPX/20.  The total delta-energy of an arbitrary analysis-cube outside 

the spherical region is the displacement energy plus the expansion energy, EPNO = 

2KT0Kc
2(X0/0)2P2 + KT0X0KcPX/20. The calculation will hold for any angle so we can replace 

P by |P|, and therefore summing the displacement and expansion energies leaves 

EPNO = 2KT0Kc
2(X0/0)2|P|2 + KT0X0Kc|P|X/20 (F11) 

The total energy of the analysis-cube is found by summing the tension, quantum and delta energies 

from Eqs. (F9), (F10) and (F11). EPN0 = ETPNO + EQPNO + EPNO = KT0X0
2[(1/2) – Kc|P|/0 + 

Kc
2|P|2/0

2 – Kc|P|X/4X00] + (2KQ0/X0
2)[(1/2) + Kc|P|/0 + Kc

2|P|2/0
2 – Kc|P|X/4X00] + 

2Kc
2KT0(X0/0)2|P|2 + KT0X0Kc|P|X/20. Next, use Eq. (22), 2KQ0/X0

2 = KT0X0
2, to get EP = 

KT0X0
2[1 + 4Kc

2(P2/0)2], which is Eq. (72). We see that Eq. (72) results whether we are inside or 

outside the sphere of charge, and whether positive-detached-aether or negative-attached-aether is 

the source for P. 
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F.7. The Physical Nature of the Delta-Force for Unlike-Kind Immersion. In the sections above 

we make three assumptions regarding our analysis of the case of negative-detached-aether within 

positive-attached-aether: 1) that the delta-force is a positive tension; 2) that displacement of the 

analysis-cube will not change its size; and 3) that the energies associated with the delta-force are 

positive for the displacement. This section will validate these assumptions while providing a 

physical understanding of the delta-force for unlike-kind immersion. 

F.7.1. Delta-force Tension. The delta-force F is a force that balances against the sum of FT and 

FQ. We have assigned a sign to F so that it adds to the weaker of FT and FQ as needed to provide 

the balancing force. Here, FT is less than FQ, and F a positive tension providing an additional 

inward force. 

The reason F adds to the weaker of the forces, rather than subtracting from the stronger, is because 

the delta-force originates from the forced expansion and compression of attached-aether as caused 

by the immersion of detached-aether. For the case of negative-detached-aether, a positive tension 

is exerted by the negative-detached-aether onto the positive-attached-aether and a positive 

quantum-force is exerted onto the negative-attached-aether. (This is a result of the positive-

attached-aether compression needed to maintain the density postulate.) As the cubes are then 

displaced, the work done makes these forces grow, and this force is the delta-force. Therefore the 

delta-force is a positive tension (positive pressure) for the case of negative-detached-aether 

immersed into positive-attached-aether (negative-attached-aether). 

F.7.2. Analysis-Cube Size During Displacement. When cube-P of positive-attached-aether is 

moved radially inward toward the center of the sphere due to injection of negative-detached-aether, 

cube-P has its tension decreased as described by Eq. (F3), FTPN = KT0X0[1 – 2Kcx/0], and cube-P 

has its quantum-force increased as described by Eq. (F5), FQPN = (2KQ0/X0
3)[1 + 2Kcx/0]. If there 
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were no delta-force, cube-P would therefore expand. However, the overlapping cube-N of 

negative-attached-aether has the opposite behavior and with no delta-force it would compress. (For 

the negative-attached-aether, Eqs. (F12) and (F13) below are FTNN = KT0X0[1 + 2Kcx/0] and FQNN 

= (2KQ0/X0
3)[1 – 2Kcx/0], respectively.) In order for the density postulate to hold as they displace, 

cube-P and cube-N must either both expand, both compress, or both retain their size. Since the 

sum of FT and FQ on cube-P, described by Eqs. (F3) and (F5), is equal and opposite to the sum of 

FT and FQ on cube-N, this symmetry informs us that the cube sizes will not change during their 

displacement, which is what is assumed above. 

F.7.3. The Physics Leading to the Delta-Force Energies. We see that the delta-force arises 

between the positive-attached-aether and the negative-attached-aether in a way that leads to no 

displacement-induced size change of the displaced cubes. We also see that motion of positive-

attached-aether inside a sphere containing negative-detached-aether causes FTP (the positive-

attached-aether tension) to recede and FQP (the positive-attached-aether quantum-force) to grow, 

and hence FP (the positive-attached-aether delta-force) must grow to offset this growing 

difference. Since the displacement of the positive-attached-aether is inward and the displacement 

of the negative-attached-aether is outward in this case, and since FP is inward, it is the 

displacement of the outward-moving negative-attached-aether that does the work against FP to 

make it grow, since we must have motion against the force to do work against it to make it grow. 

(The inward-moving positive-attached-aether would do negative work on FP and therefore it 

cannot be the source of growth for FP.) Therefore we see that FP is a positive tension that adds 

to the tension within the positive-attached-aether, and yet work is done against it by the motion of 

the negative-attached-aether. Similarly, the inward motion of the positive-attached-aether 

increases FN (the negative-attached-aether delta-force) which is a positive quantum-force within 
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the negative-attached-aether. This is the mechanism by which each type of attached-aether exerts 

forces on the other in order to maintain the equal-density postulate. 

It is the moving negative-attached-aether that is doing work against the positive-attached-aether 

delta force. Inside the spherical region the negative-attached-aether will move radially outward 

and expand. The outward motion does positive work against FP and hence the displacement term 

in Eq. (F8) is positive. Outside the spherical region negative-attached-aether will move radially 

outward and compress. The outward displacement does work against FP and hence the 

displacement term in the energy expression of Eq. (F11) is positive. 

F.7.4. The Delta-Force in Other Cases. In section C.3 and here in Appendix F we have looked 

at the cases of detached-aether immersion into positive-attached-aether. For detached-aether 

immersion into negative-attached-aether, we need merely substitute N for P and P for N 

everywhere in our analysis. This follows because doing so will not affect the like or unlike 

character of our analysis when we do so. This substitution into Eqs. (66) and (68) leaves: 

FTNN = KT0X0[1 + 2Kcx/0] (F12) 

FQNN = (2KQ0/X0
3)[1 – 2Kcx/0] (F13) 

The substitution into Eqs. (F3) and (F5) leaves: 

FTNP = KT0X0[1 – 2Kcx/0] (F14) 

FQNP = (2KQ0/X0
3)[1 + 2Kcx/0] (F15)  

  



 

189 
 

Appendix G – The Tension, Quantum-pressure and Gamma-forces Within 

a Spherical Negative-Attached-Aether Region Containing Extrinsic-

Energy. 

G.1. The Tension Inside a Spherical Negative-Attached-Aether Region Containing Extrinsic-

Energy. Using Eq. (212), PGIN = (G/60)r, along with Eq. (211), NGL = –PGL, we see that adding 

extrinsic-energy into a spherical region will cause the negative-attached-aether cubes within that 

region to compress equally in each cartesian direction. As we slowly add extrinsic-energy into our 

spherical region, the displacement of any cube within that region will have work done on it by the 

tension, with the work given by Eq. (32), WTD = (X0/0) Kc ∫ KTX0 dx, where the work will be 

negative for the inward (compression) displacements. 

Consider a cube-J, where prior to injection of extrinsic-energy, the center of cube-J is separated 

from the center of the spherical region by –(J–1)X0. The energy to displace cube-J is given by Eq. 

(32), and the displacement is (J–1)X. (A displacement of X/2 comes from each of cubes 1 and 

J and an additional X comes from each of the cubes between cube-1 and cube-J.) The first order 

force is FT = KT0X0, Integrating Eq. (32), WTD = (X0/0) Kc ∫ KT0X0 dx, from –(J–1)X0 to its final 

displacement –(J–1)(X0 – X), the work done by the tension on cube-J from the displacement is 

WTDJ = –KcKT0(X0
2/0)(J–1)X.  

Setting the compression effects aside, the tension-energy of cube-J is ET = ET0 + WTDJ = 

(1/2)KT0X0
2 – KcKT0(X0

2/0)(J–1)X. With ET = (1/2)KTX0
2, we arrive at the expression KT = 

KT0[1 – 2Kc(J–1)X/0]. The tension-force remains FT = KTX0, but now KT includes the next order 

correction.  



 

190 
 

At the beginning of the extrinsic-energy injection (when no immersion has yet occurred) FT is of 

course just KT0X0, and it is at the end of injection that FTN_END = KT0X0[1 – 2Kc(J–1)X/0]. We 

will again use x as the variable tracking the cube motion away from its equilibrium position. With 

x varying from 0 to (J–1)X during extrinsic-energy injection, we see that the force is given by 

FTN = KT0X0[1 – 2Kcx/0]  (G1) 

To verify Eq. (G1), when there is no injection, x = 0 and FT = KT0X0. When the injection is 

complete, x = (J–1)X and FT = FT_END = KT0X0[1 – 2Kc(J–1)X/0]. 

With the second order expression for the tension just derived for the displacement case, we can 

now include the second order effect in the cube tension-energy. The work done on the field due to 

the cube displacement is WTDJ = (X0/0) Kc ∫ FT dx = –KT0X0 (X0/0) Kc ∫ [1 – 2Kcx/0] dx = – 

KcKT0X0
2x/0 + Kc

2KT0(X0/0)2x2, or WTDJ = –KcKT0X0
2(J–1)X/0 + Kc

2KT0(X0/0)2(J–1)2X2 = 

–KcKT0X0
2NG/0 + Kc

2KT0(X0/0)2NG
2. 

For the displacement, the integral is evaluated between –(J–1)X0 and its final displacement –(J–

1)(X0 – X) = –(J–1)X0 + NG. The work done has a negative sign because the tension decreases in 

this case. 

The compression energy is now calculated using Eq. (63), WTC = –2 ∫ KTX0 dw. From Eq. (G1), 

KTX0 = KT0X0[1 – 2Kcx/0] where we add the minus sign in WTC because compression will reduce 

the tension. We now use Eq. (62) with NG for P, x = (NGX)w, and we obtain KTX0 = KT0X0[1–

2Kc(NG/X)w/0]. As specified in Eq. (63) we integrate from w = 0 to w = X/2. Hence WTC1 = –

2 ∫ KTX0 dw = –2KT0X0 ∫ [1–2Kc(NG/X)w/0] dw = –2KT0X0w + 2KT0X0Kc(NG/X)w2/0 = –

KT0X0X + KT0X0KcNGX/20. Recall that Eq. (63) is for one dimension only, and that inside the 

sphere the compression will be the same in all three dimensions. Hence, WTC3 = –3KT0X0X + 
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3KT0X0KcNGX/20. The total tension-energy of an arbitrary analysis-cube inside the spherical 

region is the undisturbed energy plus the displacement energy plus the compression energy, ETNGI 

= (1/2)KT0X0
2 – KcKT0X0(X0/0)NG + Kc

2KT0(X0/0)2NG
2 – 3KT0X0X + 3KT0X0KcNGX/20, or, 

ETNGI = KT0X0
2[(1/2) – KcNG/0 + Kc

2(NG/0)2 – 3X/X0 + 3KcNGX/2X00]. Here we have derived 

the force for positive NG. For negative NG or at any angle the work done is the same, so we will 

replace NG by its absolute value, |NG|: 

ETNGI = KT0X0
2[(1/2) – Kc|NG|/0 + Kc

2(|NG|/0)2 – 3X/X0 + 3Kc|NG|X/2X00] (G2) 

In Eq. (G2) and the above paragraph, the subscript TNGI refers to Tension of the Negative-

attached-aether due to immersed Gravitational effects in the region Inside the sphere. 

G.2. The Quantum-Force Inside a Spherical Negative-Attached-Aether Region Containing 

Extrinsic-Energy. Eq. (33) relates that the displacement of any cube within the sphere does work 

against the quantum-force-field of WQD = (X0/0) Kc ∫ 2KQ/X0
3

 dx. Before adding any extrinsic-

energy to our sphere, FQN = 2KQ0/X0
3, where 2KQ0/X0

3 is the quantum-force within the analysis-

cubes in their nominal state. 

Consider again cube-J of the previous section, where J is an integer. The center of cube-J is 

separated from the center of the extrinsic-energy-sphere by –(J–1)X0. The energy to displace cube-

J is given by Eq. (33), and the displacement is (J–1)X. (A displacement of X/2 comes from each 

of cubes 1 and J and an additional X comes from each of the cubes between cube-1 and cube-J.) 

To first order, FQN = 2KQ0/X0
3. Integrating Eq. (33) from –(J–1)X0 to its final displacement –(J–

1)(X0 – X), the quantum-force displacement-work is WQDJ = (X0/0)Kc[2KQ0/X0
3](J–1)X. Here, 

the positive sign of the work results because we are compressing the sphere, and the displacement 

leads to a work that increases the quantum-energy. 
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Setting the compression effects aside, the quantum-energy of cube-J is EQ = EQ0 + WDQJ = KQ0/X0
2 

+ (X0/0)Kc[2KQ0/X0
3](J–1)X = KQ0/X0

2[1 + 2Kc(J–1)X/0]. With EQ = KQ/X0
2, we arrive at the 

expression KQ = KQ0[1 + 2Kc(J–1)X/0]. The quantum-force remains FQ = 2KQ/X0
3, but now KQ 

includes the next order correction. At the beginning of the extrinsic-energy injection (when no 

immersion has yet occurred) FQ is of course just 2KQ0/X0
3, and it is at the end of immersion that 

FQN_END = (2KQ0/X0
3)[1 + 2Kc(J–1)X/0]. Therefore we see that,  

FQN = (2KQ0/X0
3)[1 + 2Kcx/0] (G3) 

To verify Eq. (G3), when there is no injection, x = 0 and FQ = 2KQ0/X0
3. When the injection is 

complete, x = (J–1)X and FQ = FQN_END = (2KQ0/X0
3)[1 + 2Kc(J–1)X/0]. 

With the second order expression for the quantum-force just derived for the displacement case, we 

can now include the second order effect in the cube quantum-energy. The work done on the field 

due to the cube displacement is WQDJ = (X0/0) Kc ∫ FQ dx = (2KQ0/X0
3) (X0/0) Kc ∫ [1 + 2Kcx/0] 

dx = Kc(2KQ0/X0
20)x + Kc

2(2KQ0/X0
20

2)x2, or WQDJ = Kc(2KQ0/X0
20)(J–1)X + 

Kc
2(2KQ0/X0

20
2)(J–1)2X2 = Kc(2KQ0/X0

20)NG + Kc
2(2KQ0/X0

20
2)NG

2 . 

For the displacement, the integral is evaluated between –(J–1)X0 and its final displacement –(J–

1)(X0 – X) = –(J–1)X0 + NG. The work done has a positive sign because the quantum-force 

increases in this case.  

The compression energy is now calculated using Eq. (64), WQC = 4 ∫ KQ/X0
3 dw. From Eq. (G3), 

FQN = (2KQ0/X0
3)[1 + 2Kcx/0]. We again use Eq. (62) with NG for P, x = (NGX)w, and we obtain 

FQN/2 = KQ/X0
3 = (KQ0/X0

3)[1+2Kc(NG/X)w/0]. As specified in Eq. (64) we integrate from w = 

0 to w = X/2. Hence WQC1 = 4 ∫ KQ/X0
3 dw = 4KQ0/X0

3 ∫ [1+2Kc(NG/X)w/0] dw = (4KQ0/X0
3)w 

+ (4KQ0/X0
3)Kc(NG/X)w2/0 = (2KQ0/X0

3)X + (KQ0/X0
3)KcNGX/0. Recall that Eq. (64) is for 
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one dimension only, and that inside the sphere the compression will be the same in all three 

dimensions. Hence, WTC3 = (6KQ0/X0
3)X + (3KQ0/X0

3)KcNGX/0. The total quantum-energy of 

an arbitrary analysis-cube inside the spherical region is the undisturbed energy plus the 

displacement energy plus the compression energy, EQNGI = KQ0/X0
2 + Kc(2KQ0/X0

20)NG + 

Kc
2(2KQ0/X0

20
2)NG

2 + (6KQ0/X0
3)X + (3KQ0/X0

3)KcNGX/0, or, EQNGI = (2KQ0/X0
2)[(1/2) + 

KcNG/0 + Kc
2NG

2/0
2 + 3X/X0 + 3KcNGX/2X00]. Here we have derived the force for positive 

NG. For NG at any angle the work done is the same, so we will replace NG by its absolute value, 

|NG|: 

EQNGI = (2KQ0/X0
2)[(1/2) + Kc|NG|/0 + Kc

2|NG|2/0
2 + 3X/X0 + 3Kc|NG|X/2X00] (G4) 

In Eq. (G4) and the above paragraph, the subscript QNGI refers to Quantum-force of the Negative-

attached-aether due to Gravitational effects in the region Inside the sphere. 

G.3. The Gamma-Force and Gamma-Energy Fields Inside a Spherical Negative-Attached-

Aether Region Containing Extrinsic-Energy. Injection of extrinsic-energy causes negative-

attached-aether to compress leading to the forces described in Eqs. (G1) and (G3), FTN = KT0X0[1 

– 2Kcx/0] and FQN = (2KQ0/X0
3)[1 + 2Kcx/0], respectively. In order to achieve a force balance 

within the attached-aether, we have proposed a balancing force called the gamma-force in Eq. 

(216), F = –FTL – FQ. 

At this point recall that the tension FTL is directed inward (toward the center of the sphere) while 

the quantum-force FQ is directed outward to arrive at FNI = KT0X0[1 – 2Kcx/0]r̂ – (2KQ0/X0
3)[1 

+ 2Kcx/0]r̂. And now recall Eq. (21) above, 2KQ0/X0
3 = KT0X0, leaving FNI = KT0X0[1 – 2Kcx/0 

– 1 – 2Kcx/0]r̂, or 

FNI = –(4KcKT0X0x/0)r̂ (G5) 
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Since the quantum-force exceeds the tension for the negative-attached-aether case, the gamma-

force could be a positive tension, a negative quantum-force or some combination of gamma-

tension and gamma-quantum-force summing to the net force field given in Eq. (G5). We now use 

a coupling of gamma-force components similar to that employed in Eqs. (218) and (219): 

FNQ = –4Kc(1+KGC)KT0(X0/0)xr̂ (G6) 

FNT = 4KcKGCKT0(X0/0)xr̂ (G7) 

It can be seen that Eq. (G6) is a negative quantum-force, as it is directed inward, while Eq. (G7) is 

a negative tension-force, as it is directed outward. The work done on the gamma-fields due to the 

cube displacement is calculated as Eq. (220), WD = (X0/0) Kc ∫ F dx, or WNDQ = –2Kc
2(1+ 

KGC)KT0(X0/0)2(J–1)2X2 = –2Kc
2(1+KGC)KT0(X0/0)2NG

2 and WNDT = –2Kc
2KGCKT0(X0/0)2(J–

1)2X2 = –2Kc
2KGCKT0(X0/0)2NG

2. 

(For the displacement, the integrals are evaluated between zero and NG = (J–1)X.) 

The compression energy is now calculated using Eq. (63), WTC = 2 ∫ FT dw. From Eq. (G6), FNQ 

= –4Kc(1+KGC)KT0(X0/0)x. We now use Eq. (62) with NG for P, x = (NGX)w, and for the 

quantum-force gamma-force component we have FNQ = –4Kc(1+KGC)KT0(X0/0)(NGX)w. As 

specified in Eq. (63) we integrate from w = 0 to w = X/2 and the work is negative as we are 

compressing along a negative quantum-force. So WNQC1 = –2 ∫ 4Kc(1+KGC)KT0(X0/0)(NGX)w 

dw = –4Kc(1+KGC)KT0(X0/0)(NGX)w2 = –Kc(1+KGC)KT0(X0/0)NGX. Recall that Eq. (63) is 

for one dimension only, and that inside the sphere the compression will be the same in all three 

dimensions. Hence, WNQC3 = –3Kc(1+KGC)KT0(X0/0)NGX. For the tension component of the 

gamma-force we have FNT = 4KcKGCKT0(X0/0)x, and we again use x = (NGX)w to get FNT = 

4KcKGCKT0(X0/0)(NGX)w. As specified in Eq. (63) we integrate from w = 0 to w = X/2. Here 
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the energy is positive as we compress against the negative gamma tension. Hence WNTC1 = 2 ∫ 

4KcKGCKT0(X0/0)(NGX)w dw = 4KcKGCKT0(X0/0)(NGX)w2 = KcKGCKT0(X0/0)NGX. 

Recall that Eq. (63) is for one dimension only, and that inside the sphere the compression will be 

the same in all three dimensions. Hence, WNTC3 = 3KcKGCKT0(X0/0)NGX. 

The total gamma-energy of an arbitrary analysis-cube inside the spherical region is the sum of the 

displacement and compression energies, ENGI = –2Kc
2(1+KGC)KT0(X0/0)2NG

2 – 

2Kc
2KGCKT0(X0/0)2NG

2 – 3Kc(1+KGC)KT0(X0/0)NGX + 3KcKGCKT0(X0/0)NGX = –

2Kc
2(1+2KGC)KT0(X0/0)2NG

2 – 3KcKT0(X0/0)NGX = –2Kc
2KT0(X0/0)2NG

2 – 

4Kc
2KGCKT0(X0/0)2NG

2 – 3KcKT0(X0/0)NGX. Here we have derived the force for positive NG. 

For NG at any angle the work done is same, so we will replace NG by its absolute value, |NG|: 

ENGI = KT0X0
2[–2Kc

2(|NG|/0)2 – 4Kc
2KGC(|NG|/0)2 – 3Kc|NG|X/X00] (G8) 

In Eq. (G8) and the above paragraph, the subscript NGI refers to the -energy of the Negative-

attached-aether due to immersed Gravitational effects in the region Inside the sphere. 

The total energy of an analysis-cube is found by summing the tension, quantum and gamma 

energies found in Eqs. (G2), (G4) and (G8). ENG = ETNGI + EQNGI + ENGI = KT0X0
2[(1/2) – Kc|NG|/0 

+ Kc
2|NG|2/0

2 – 3X/X0 + 3Kc|NG|X/2X00] + (2KQ0/X0
2)[(1/2) + Kc|NG|/0 + Kc

2|NG|2/0
2 + 

3X/X0 + 3Kc|NG|X/2X00] + KT0X0
2[–2Kc

2(|NG|/0)2 – 4Kc
2KGC(|NG|/0)2 – 3Kc|NG|X/X00], 

or, with Eq. (22), KT0X0
2 = 2KQ0/X0

2 

ENG = KT0X0
2[1 – 4Kc

2KGC(|NG|/0)2] (G9)  

G.4. The Physical Nature of the Gamma-Force Inside a Sphere of Negative-Attached-Aether 

Containing Extrinsic-energy. In the sections above we make four assumptions in our analysis 

regarding the case of extrinsic-energy within negative-attached-aether: 1) the gamma-force has a 
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negative tension component; 2) the gamma-force has a negative quantum-pressure component; 3) 

displacement of the analysis-cube will not lead to a change in cube size; and 4) the energies 

associated with the gamma-force are negative for the displacement. This section will validate these 

assumptions while providing a physical understanding of the gamma-force. 

G.4.1. The Negative Gamma-force Tension and Quantum-Pressure Components. The 

gamma-force F is a force that balances against the sum of FT and FQ. Above in Eqs. (G6) and 

(G7) we have assigned two components to F and arranged that the sum of these components will 

subtract from the stronger of FT and FQ as needed to provide the balancing force. Since FT is less 

than FQ for the case discussed, the total F is a negative quantum-force providing an additional 

inward force.  

The reason F has two components, and the reason the total F subtracts from the stronger of the 

forces, rather than adding to the weaker, is because the gamma-force originates from the force 

reductions caused by the immersion of extrinsic-energy as specified in the Extrinsic-Energy Force-

Reduction Law. As the cubes are then displaced, the work done makes these force reductions grow, 

and these negative forces are the two components of the gamma-force. These forces then balance 

against the sum of FT and FQ as described above in Eqs. (G6) and (G7). 

G.4.2. Analysis-Cube Size During Displacement. As described above, when cube-N of negative-

attached-aether is moved inward due to injection of extrinsic-energy, cube-N has its tension 

reduced as described by Eq. (G1), FTN = KT0X0[1 – 2Kcx/0], and cube-N has its quantum-force 

increased as described by Eq. (G3), FQN = (2KQ0/X0
3)[1 + 2Kcx/0]. If there were no gamma-force, 

cube-N would therefore expand. However, the overlapping cube-P of positive-attached-aether has 

the opposite behavior (see section D.3.5.2), and with no gamma-force it would compress. (Eqs. 

(66) and (68) used in section D.3 are FTPP = KT0X0[1 + 2Kcx/0] and FQPP = (2KQ0/X0
3)[1 – 
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2Kcx/0], respectively.) In order for the density postulate to hold as they displace, cube-N and 

cube-P must either both expand, both compress, or both retain their size. Since the sum of FT and 

FQ on cube-N, described by Eqs. (G1) and (G3), is equal and opposite to the sum of FT and FQ on 

cube-P, this symmetry informs that the cube sizes will not change during their displacement, which 

is what is assumed above.  

G.4.3. The Physics Leading to the Gamma-Force Energies. We see that the gamma-force arises 

between the positive-attached-aether and the negative-attached-aether in a way that leads to no 

displacement-induced size change of the displaced cubes. We also see that motion of attached-

aether causes FQN (the negative-attached-aether quantum-force) to grow and FTN (the negative-

attached-aether tension) to recede, and hence F (the total gamma-force) must grow in magnitude 

to offset this growing difference. In this case, F = FNT + FNQ, and inspection of Eqs. (G6) and 

(G7) reveals that |FNQ| > |FNT|. 

First consider the gamma-force component FNQ. Since the displacement of the negative-attached-

aether is inward and the displacement of the positive-attached-aether is outward in this case, and 

since FNQ is inward, it is the displacement of the outward-moving positive-attached-aether that 

does the work against FNQ to make its magnitude grow, since we must have motion against the 

force to do work against it to make it grow. (The inward-moving negative-attached-aether moves 

in the direction of the force and would do negative work on FNQ and therefore it cannot be the 

source of growth for FNQ.) Therefore we see that FNQ is a negative quantum-force that subtracts 

from the nominal quantum-force within the negative-attached-aether, and yet work is done against 

it by the motion of the positive-attached-aether.  

Now let us look at the gamma-force component FNT. Since the displacement of the negative-

attached-aether is inward and the displacement of the positive-attached-aether is outward in this 
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case, and since FNT is outward, it is the displacement of the inward-moving negative-attached-

aether that does the work against FNT to make it grow, since we must have motion against the 

force to do work against it to make it grow. (The outward-moving positive-attached-aether would 

do negative work on FNT and therefore it cannot be the source of growth for FNT.) Therefore we 

see that FNT is a negative tension that subtracts from the nominal tension within the negative-

attached-aether, and work is done against it by the motion of the negative-attached-aether.  

Since FNT and FNQ are forces of a negative tension and negative pressure, respectively, they both 

contribute negative energies to (relax positive energies of) the aetherial cubes. 

The leading FPT term in Eq. (218) from section D.3.4, 4KcKT0(X0/0)xr̂, and the leading FNQ term 

in Eq. (G6), –4KcKT0(X0/0)xr̂, are what provide the mechanism by which each type of attached-

aether exerts forces on the other to maintain the equal-density postulate. The leading FNQ term in 

Eq. (G6) cancels the sum of the forces of tension FTN and quantum-force FQN, and when integrated 

over the displacement it also contributes a negative work to offset the work done by FTN and FQN. 

The trailing FNQ term, –4KcKGCKT0(X0/0)xr̂, in Eq. (G6) and FNT term, 4KcKGCKT0(X0/0)xr̂ in 

Eq. (G7) are forces that balance each other while contributing negative work to reduce the total 

energy in the negative-attached-aether. It is this reduction in total energy that leads to Newtonian 

gravity, as discussed above. 
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Appendix H – The Tension, Quantum-pressure and Gamma-forces 

Outside a Spherical Region Containing Extrinsic-Energy. 

H.1. Positive-Aetherial-Displacement Outside a Spherical Attached-Aether Region 

Containing Extrinsic-Energy. Eq. (213), PGOUT = P0R0
2r̂/r2, informs us that outside of a sphere 

of extrinsic-energy the positive-attached-aether cubes will be compressed rather than expanded. 

To see this, notice that a spherical shell originally located a distance r from the center of the sphere 

with thickness dr is pushed outward by a distance PR = P0R0
2r̂/r2. Since there is no extrinsic-energy 

outside of the sphere, the density is a constant 0 there and hence the volume of the shell remains 

constant during its outward displacement. With drD defined as the shell thickness after it is 

displaced by PR, volume invariance results in 4r2dr = 4(r+PR)2drD, or drD/dr = r2/(r+PR)2 = 

r2/[r2(1+PR/r)2] = (1+PR/r)–2 ≈ 1 – 2PR/r. Now Eq. (213) gives the magnitude PR = P0R0
2/r2, and 

therefore drD/dr ≈ 1 – 2P0R0
2/r3, or drD ≈ dr – 2drP0R0

2/r3. This results in the amount of compression 

being rD = drD – dr = –2drP0R0
2/r3, where dr can be any small radial distance. Assigning dr to the 

size of an analysis-cube, dr = X0, we see that the analysis-cubes are compressed by X = 

2X0P0R0
2/r3. At the edge of the sphere, the analysis-cubes are displaced radially outward by P0 and 

the radial compression will gradually lower the displacement of the more distant cubes to the 

displacement PR = P0R0
2/r2 given by Eq. (213). In this case, all cubes are still displaced in the 

outward direction however, and so the radial tension-force-field is increased, it is just that the 

amount of increase falls off as 1/r3. 

In the directions perpendicular to r the cubes will expand. The area of each spherical shell increases 

to 4(r+PR)2 from its original 4r2. We have (r+PR)2/r2 = (1+PR/r)2 ≈ 1+2PR/r, and we can see that 

the relative area expansion is A/A = 2PR/r. Now we form A = Y2, and we see A/Y = 2Y, leading 
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to (A/Y)/A = (2Y)/Y2, or A/A = 2Y/Y and hence Y/Y = PR/r. Therefore a cube of size Y = 

X0 will expand by Y = X0PR/r = X0P0R0
2/r3, or Y = X/2, which is Eq. (73). 

Now consider cube-PG, a cube that is displaced by a distance PG. Integrating Eq. (32), WTD = 

(X0/0) Kc ∫ KTX0 dx, from 0 to |PG|, the first-order work done against the tension on cube-PG from 

the displacement is WTD = KcKT0X0
2|PG|/0. (The work is positive for all cubes at any PG, since 

the spherical shell is displacing outward, against the tension. Hence, the absolute value is used in 

the expression.)  

Setting the compression effects aside, the tension-energy of cube-PG is ET = ET0 + WTD = 

(1/2)KT0X0
2 + KcKT0X0

2|PG|/0. With ET = (1/2)KTX0
2, we arrive at the expression KT = KT0[1 + 

2Kc|PG|/0]. The tension-force remains FT = KTX0, but now KT includes the next order correction. 

As extrinsic-energy is slowly injected, cube-PG will move a distance |PG|. At the beginning of the 

motion FT is of course just KT0X0, and it is at the end that FTP_END = KT0X0[1 + 2Kc|PG|/0]. With 

x defined as the deviation of the cube center from its nominal center (which varies from 0 to |PG| 

during the detached-aether injection) the full expression for tension-force in the analysis-cube is 

FTP = KT0X0[1 + 2Kcx/0] (H1)  

In Eq. (H1) x varies from 0 to |PG|. 

The second-order effect on the cube tension-energy is included by calculating the work done on 

the field due to the cube displacement which is WTD = Kc (X0/0) ∫ FTP dx = (X0/0) KT0X0 Kc ∫ 

[1+2Kcx/0] dx = Kc(X0/0)KT0X0x + Kc
2(X0/0)2KT0x2 = KcX0

2KT0|PG|/0 + Kc
2(X0/0)2KT0|PG|2.  

The compression energy is now calculated by including a minus sign in Eq. (63) since compression 

will release energy from the tension, WTC = –2 ∫ KTX0 dw. From Eq. (H1), KTX0 = KT0X0[1 + 

2Kcx/0]. We now use Eq. (62) with PG instead of P, x = (PGX)w, to obtain KTX0 = 
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KT0X0[1+2Kc(PG/X)w/0]. As specified in Eq. (63) we integrate from w = 0 to w = X/2. Hence 

WTC1 = –2 ∫ KTX0 dw = –2KT0X0 ∫ [1+2Kc(PG/X)w/0] dw = –2KT0X0w – 2KT0X0Kc(PG/X)w2/0 

= –KT0X0X – KT0X0KcPGX/20.  

Recall that Eq. (63) is for one dimension only. Eq. (73) informs that outside the sphere there is an 

expansion Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Also, since it is an expansion we do work against the 

tension and the work is positive. For each transverse dimension then we obtain WTC2 = 2KT0X0w 

+ 2KT0X0Kc(PG/X)w2/0 = KT0X0X/2 + KT0X0Kc(PG/X)X2/80, and the total expansion energy 

will be twice that, since there are two dimensions. Hence, WTC3 = WTC1 + 2WTC2 = –KT0X0X – 

KT0X0KcPGX/20 + KT0X0X + KT0X0KcPGX/40 = –KT0X0KcPGX/40. The total tension-

energy of an arbitrary analysis-cube outside the spherical region is the undisturbed energy plus the 

displacement energy plus the expansion energy, ETPGO = (1/2)KT0X0
2 + KcX0

2KT0|PG|/0 + 

Kc
2(X0/0)2KT0|PG|2 – KT0X0Kc|PG|X/40, or, 

ETPGO = KT0X0
2[(1/2) + Kc|PG|/0 + Kc

2(|PG|/0)2 – Kc|PG|X/4X00] (H2) 

Turning to the quantum-field, the energy freed as cube-PG is displaced is given by Eq. (33), WQD 

= (X0/0)Kc∫2KQ/X0
3 dx, and the displacement is PG. The first order work done against the 

quantum-force-field as cube-PG is displaced is WQDP = –2PGKcKQ0/X0
20. Setting the compression 

effects aside to focus on the effect of displacement, the quantum-energy of cube-PG is EQ = EQ0 + 

WQDP = KQ0/X0
2 – (X0/0)[2PGKcKQ0/X0

3] = (KQ0/X0
2)(1 – 2KcPG/0). With EQ = KQ/X0

2, we arrive 

at the expression KQ = KQ0(1 – 2KcPG/0). The quantum-force remains FQ = 2KQ/X0
3, but now KQ 

includes the next order correction. As detached-aether is slowly injected, the center of cube-PG 

will move a distance PG. At the beginning of the motion FQP is of course just 2KQ0/X0
3, and it is at 
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the end that FQP = (2KQ0/X0
3)[1 – 2KcPG/0]. With x again defined as the deviation of the cube 

center from its nominal center (which varies from 0 to PG during the detached-aether injection) the 

full expression for quantum-force in the analysis-cube is 

FQP = (2KQ0/X0
3)[1 – 2Kcx/0] (H3) 

The second order effect on the cube quantum-energy due to the cube displacement is now included 

with WQDP = –(X0/0)Kc ∫ FQP dx = –(X0/0)Kc ∫ (2KQ0/X0
3)[1–2Kcx/0] dx = –(2KQ0Kc/X0

20)x + 

(2KQ0Kc
2/X0

20
2)x2 = –(2KQ0Kc/X0

20)PG + (2KQ0Kc
2/X0

20
2)PG

2.  

The compression energy is calculated using Eq. (64) and with a positive sign, since compression 

will do work against the quantum-pressure, WQC = 4 ∫ KQ/X0
3 dw. From Eq. (H3), FQP = 

(2KQ0/X0
3)[1 – 2Kcx/0]. We now use Eq. (62) with PG for P, x = (PGX)w, to obtain FQP/2 = 

KQ/X0
3 = (KQ0/X0

3)[1–2Kc(PG/X)w/0]. As specified in Eq. (64) we integrate from w = 0 to w = 

X/2. Hence WQC1 = 4 ∫ KQ/X0
3 dw = 4(KQ0/X0

3) ∫ [1–2Kc(PG/X)w/0] dw = 4(KQ0/X0
3)w – 

4(KQ0/X0
3)Kc(PG/X)w2/0 = 2(KQ0/X0

3)X – (KQ0/X0
3)KcPGX/0.  

Recall that Eq. (64) is for one dimension only. Eq. (73) informs that outside the sphere there is an 

expansion Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Also, since it is an expansion the quantum-pressure 

will decrease and our signs reverse. For each transverse dimension then we obtain WTC2 = –

4(KQ0/X0
3)w + 4(KQ0/X0

3)Kc(PG/X)w2/0 = –(KQ0/X0
3)X + (KQ0/X0

3)Kc(PG/X)X2/40, and the 

total expansion energy will be twice that, since there are two dimensions. Hence, WQC3 = WQC1 + 

2WQC2 = 2(KQ0/X0
3)X – (KQ0/X0

3)KcPGX/0 – 2(KQ0/X0
3)X + (KQ0/X0

3)KcPGX/20 = –

(KQ0/X0
3)KcPGX/20. The total quantum-energy of an arbitrary analysis-cube outside the 

spherical region is the undisturbed energy plus the displacement energy plus the expansion energy, 
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EQPGO = KQ0/X0
2 – (2KQ0Kc/X0

20)PG + (2KQ0Kc
2/X0

20
2)PG

2 – (KQ0/X0
3)KcPGX/20, or, EQPGO = 

(2KQ0/X0
2)[(1/2) – (Kc/0)PG + (Kc

2/0
2)PG

2 – KcPGX/4X00]. Here we have derived the force for 

positive PG. For negative PG (or PG at any angle) the work done is still negative, since such a cube 

is still expanding outward in the direction of the quantum-force. Hence we will replace PG by its 

absolute value, |PG|: 

EQPGO = (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2(|PG|/0)2 – Kc|PG|X/4X00] (H4) 

We now recall that the gamma-force will be given by Eq. (216), F = –FTL – FQ. With the tension 

directed inward and the quantum-force directed outward and using Eqs. (H1) and (H3), FTP = 

KT0X0[1 + 2Kcx/0] and FQP = [2KQ0/X0
3][1 – 2Kcx/0], respectively, we obtain FPO = KT0X0[1 + 

2Kcx/0]r̂ – [2KQ0/X0
3][1 – 2Kcx/0]r̂. And with Eq. (21) above, 2KQ0/X0

3 = KT0X0, we get FPO = 

KT0X0[1 + 2Kcx/0 – 1 + 2Kcx/0]r̂, or,  

FPO = 4KcKT0(X0/0)xr̂ (H5) 

Since the tension exceeds the quantum-force for the positive-attached-aether case, the gamma-

force could be a negative tension, a positive quantum-force or some combination of gamma-

tension and gamma-quantum-force summing to the net force field given in Eq. (H5). We now use 

the same coupling of gamma-force components that was employed in Eqs. (218) and (219) 

FPT = 4Kc(1+ KGC)KT0(X0/0)xr̂ (218) 

FPQ = –4KcKGCKT0(X0/0)xr̂ (219) 

The gamma-tension-force displacement-work on the cube is WPTD = (X0/0) Kc ∫ FPT dx = –(X0/0) 

Kc ∫ 4Kc(1+KGC)KT0(X0/0)x dx = –2Kc
2(1+KGC)KT0(X0/0)2x2 = –2Kc

2(1+KGC)KT0(X0/0)2PG
2. 

The gamma-quantum-force displacement-work on the cube is WPQD = (X0/0) Kc ∫ FPQ dx = –

(X0/0) Kc ∫ 4KcKGCKT0(X0/0)x dx = –2Kc
2KGCKT0(X0/0)2x2 = –2Kc

2KGCKT0(X0/0)2PG
2. For 
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both the tension and quantum-force components, work is done on the cube displacement, lowering 

the field energies leading to minus signs, as discussed in sections D.3.5 and H.2.  

The compression energy is now calculated using Eq. (63), WTC = 2 ∫ FT dw. From Eq. (218), FPT 

= 4Kc(1+KGC)KT0(X0/0)x. We now use Eq. (62) with PG for P, x = (PGX)w, and for the tension 

component of the gamma-force we have FPT = 4Kc(1+ KGC)KT0(X0/0)(PGX)w. As specified in 

Eq. (63) we integrate from w=0 to w=X/2. Hence WPTC1 = 2 ∫ 4Kc(1+KGC)KT0(X0/0)(PGX)w 

dw = 4Kc(1+KGC)KT0(X0/0)(PGX)w2 = Kc(1+KGC)KT0(X0/0)PGX. For the gamma-force 

quantum-force component from Eq. (219) we have FPQ = –4KcKGCKT0(X0/0)x, and we again use 

x = (PGX)w to get FPQ = –4KcKGCKT0(X0/0)(PGX)w. As specified in Eq. (63) we integrate 

from w = 0 to w = X/2. Hence WPQC1 = –2 ∫ 4KcKGCKT0(X0/0)(PGX)w dw = –

4KcKGCKT0(X0/0)(PGX)w2 = –KcKGCKT0(X0/0)PGX. 

Recall that Eq. (63) is for one dimension only. Eq. (73) informs that outside the sphere there is an 

expansion Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. The signs of the work change because these dimensions 

expand instead of compress. For each transverse dimension we obtain a gamma tension work of 

WPTC2 = –4Kc(1+KGC)KT0(X0/0)(PGX)w2 = –Kc(1+KGC)KT0(X0/0)PGX/4. Similarly we 

obtain a gamma quantum-force work of WPQC2 = 4KcKGCKT0(X0/0)(PGX)w2 = 

KcKGCKT0(X0/0)PGX/4. 

Since there are two transverse dimensions, adding the radial compression energy to the transverse 

expansion energies we obtain WPTC3 = WPTC1 + 2WPTC2 = Kc(1+KGC)KT0(X0/0)PGX – 

Kc(1+KGC)KT0X0PGX/20 = Kc(1+KGC)KT0X0PGX/20 and WPQC3 = WPQC1 + 2WPQC2 = –

KcKGCKT0(X0/0)PGX + KcKGCKT0X0PGX/20 = –KcKGCKT0X0PGX/20. 
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The total gamma-energy of an arbitrary analysis-cube outside the spherical region is the sum of 

the displacement energies (WPTD and WPQD) and the compression energies (WPTC3 and WPQC3), 

EPGO = –2Kc
2(1+KGC)KT0(X0/0)2PG

2 – 2Kc
2KGCKT0(X0/0)2PG

2 + Kc(1+KGC)KT0X0PGX/20 – 

KcKGCKT0X0PGX/20 = –2Kc
2(1+2KGC)KT0(X0/0)2PG

2 + KcKT0X0PGX/20. Here we have 

derived the force for positive PG. For PG at any angle the work done is still the same, so we will 

replace P by its absolute value, |PG|, EPGO = KT0X0
2[–2Kc

2(1+2KGC)(|PG|/0)2 + Kc|PG|X/2X00], 

or 

EPGO = KT0X0
2[–2Kc

2(|PG|/0)2 – 4Kc
2KGC(|PG|/0)2 + Kc|PG|X/2X00] (H6) 

The total energy is found by summing the tension, quantum and gamma energies, Eqs. (H2), (H4) 

and (H6). EPGO = KT0X0
2[(1/2) + Kc|PG|/0 + Kc

2|PG|2/0
2 – Kc|PG|X/4X00] + (2KQ0/X0

2)[(1/2 – 

Kc|PG|/0 + Kc
2|PG|2/0

2 – Kc|PG|X/4X00] + KT0X0
2[–2Kc

2(|PG|/0)2 – 4Kc
2KGC(|PG|/0)2 + 

Kc|PG|X/2X00]. Next, we use Eq. (22), 2KQ0/X0
2 = KT0X0

2, to get EPGO = KT0X0
2(1 – 

4Kc
2KGC|PG|2/0

2), which is Eq. (225). Thus we see that Eq. (225) holds both inside and outside 

the sphere of extrinsic-energy. 

H.2. The Physical Nature of the Gamma-Force Outside a Spherical Positive-Attached-Aether 

Region Containing Extrinsic-Energy. Outside a sphere of immersed extrinsic-energy, the 

positive-attached-aether will be compressed in the radial direction rather than expanded. The radial 

compression leads to a change in the sign of the work done from what was considered in section 

D.3 where we considered a radial expansion. The other difference from section D.3 is that we now 

no longer have any extrinsic-energy within the analysis-cubes to initiate the gamma forces. Instead, 

the gamma forces will be given by Eqs. (218) and (219) because of the continuity of those forces 

from the region inside the sphere. Beyond those two changes, the discussion of section D.3.5 

remains valid outside the sphere. 
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H.3. Negative-Aetherial-Displacement Outside a Spherical Attached-Aether Region 

Containing Extrinsic-Energy. Eq. (213), PGOUT = P0R0
2r̂/r2, coupled with Eq. (211), NGL = –

PGL, inform us that outside of the sphere of extrinsic-energy the negative-attached-aether cubes 

will be radially expanded rather than compressed. To see this, notice that a spherical shell 

originally located a distance r from the center of the sphere with thickness dr is pulled inward by 

a distance NR = N0R0
2r̂/r2. Since there is no extrinsic-energy outside of the sphere, the density is a 

constant 0 there and hence the volume of the shell remains constant during its inward 

displacement. With drD defined as the shell thickness after it is displaced by NR, volume invariance 

results in 4r2dr = 4(r–NR)2drD, or drD/dr = r2/(r–NR)2 = r2/[r2(1–NR/r)2] = (1–NR/r)–2 ≈ 1 + 2NR/r. 

Now Eq. (213) coupled with Eq. (211) give the magnitude NR = N0R0
2/r2, and therefore drD/dr ≈ 1 

+ 2N0R0
2/r3, or drD ≈ dr + 2drN0R0

2/r3. This results in the amount of expansion being rD = drD – 

dr = 2drN0R0
2/r3, where dr can be any small radial distance. Assigning dr to the size of an analysis-

cube, dr = X0, we see that the analysis-cubes are expanded by X = 2X0N0R0
2/r3. 

In the directions perpendicular to r the cubes will compress. The area of each spherical shell 

decreases to 4(r–NR)2 from its original 4r2. We have (r–NR)2/r2 = (1–NR/r)2 ≈ 1–2NR/r, and we 

can see that the relative area compression is A/A = –2NR/r. Now we form A = Y2, and we see 

A/Y = 2Y, leading to (A/Y)/A = (2Y)/Y2, or A/A = 2Y/Y and hence Y/Y = –NR/r. 

Therefore a cube of size Y = X0 will compress by Y = X0NR/r = X0N0R0
2/r3, or Y = X/2, which 

is Eq. (73). 

Now consider cube-NG, a cube that is displaced by a distance NG. Integrating Eq. (32) with a 

negative sign since the displacement is in the direction of the force, WTD = – (X0/0) Kc ∫ KTX0 dx, 

from 0 to |NG|, the first-order work done against the tension on cube-NG from the displacement is 

WTD = –KcKT0X0
2NG/0.  
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Setting the expansion effects aside, the tension-energy of cube-NG is ET = ET0 + WTD = (1/2)KT0X0
2 

– KcKT0X0
2NG/0. With ET = (1/2)KTX0

2, we arrive at the expression KT = KT0[1 – 2KcNG/0]. The 

tension-force remains FT = KTX0, but now KT includes the next order correction. As extrinsic-

energy is slowly injected, cube-NG will move a distance NG. At the beginning of the motion FT is 

of course just KT0X0, and it is at the end that FTN_END = KT0X0[1 – 2KcNG/0]. With x again defined 

as the deviation of the cube center from its nominal center (which varies from 0 to NG during the 

detached-aether injection) the full expression for tension-force in the analysis-cube is 

FTN = KT0X0[1 – 2Kcx/0] (H7)  

The second-order effect on the cube tension-energy is included by calculating the work done on 

the field due to the cube displacement which is Eq. (32), WTND = –Kc (X0/0) ∫ FTN dx = –(X0/0) 

KT0X0 Kc ∫ [1–2Kcx/0] dx = –Kc(X0/0)KT0X0x + Kc
2(X0/0)2KT0x2 = –KcX0

2KT0NG/0 + 

Kc
2(X0/0)2KT0NG

2.  

The radial expansion energy is now calculated by Eq. (63), WTC = 2 ∫ KTX0 dw. From Eq. (H7), 

KTX0 = KT0X0[1 – 2Kcx/0]. We now use Eq. (62) with NG instead of P, x = (NGX)w, to obtain 

KTX0 = KT0X0[1–2Kc(NG/X)w/0]. As specified in Eq. (63) we integrate from w = 0 to w = X/2. 

Hence WTC1 = 2 ∫ KTX0 dw = 2KT0X0 ∫ [1–2Kc(NG/X)w/0] dw = 2KT0X0w – 

2KT0X0Kc(NG/X)w2/0 = KT0X0X – KT0X0KcNGX/20.  

Recall that Eq. (63) is for one dimension only. Eq. (73) informs that outside the sphere there is a 

compression Y = X/2 for each of the two transverse dimensions and for those dimensions we 

integrate from 0 to Y/2, which is equal to 0 to X/4. Also, since it is a compression we do work 

with the tension and our sign is negative. For each transverse dimension then we obtain WTC2 = –

2KT0X0w + 2KT0X0Kc(NG/X)w2/0 = –KT0X0X/2 + KT0X0Kc(NG/X)X2/80. The total 
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compression energy is WTC3 = WTC1 + 2WTC2 = KT0X0X – KT0X0KcNGX/20 – KT0X0X + 

KT0X0KcNGX/40 = –KT0X0KcNGX/40. The total tension-energy of an arbitrary analysis-cube 

outside the spherical region is the undisturbed energy plus the displacement energy plus the 

expansion energy, ETNGO = (1/2)KT0X0
2 – KcX0

2KT0NG/0 + Kc
2(X0/0)2KT0NG

2 – 

KT0X0KcNGX/40, and since the derivation will be the same for any angle we can replace NG by 

|NG|, and ETNGO = (1/2)KT0X0
2 – KcX0

2KT0|NG|/0 + Kc
2(X0/0)2KT0|NG|2 – KT0X0Kc|NG|X/40, or, 

ETNGO = KT0X0
2[(1/2) – Kc|NG|/0 + Kc

2(|NG|/0)2 – Kc|NG|X/4X00] (H8) 

Turning to the quantum-field, the energy increase as cube-NG is displaced is given by Eq. (33), 

WQD = (X0/0)Kc∫2KQ/X0
3 dx, and the displacement is NG. The work done against the first order 

quantum-force-field as cube-NG is displaced is WQD = 2NGKcKQ0/X0
20. Setting the expansion 

effects aside to focus on the effect of displacement, the quantum-energy of cube-NG is EQ = EQ0 + 

WQD = KQ0/X0
2 + 2NGKcKQ0/X0

20 = (KQ0/X0
2)(1 + 2KcNG/0). With EQ = KQ/X0

2, we arrive at the 

expression KQ = KQ0(1 + 2KcNG/0). The quantum-force remains FQ = 2KQ/X0
3, but now KQ 

includes the next order correction. As detached-aether is slowly injected, the center of cube-NG 

will move a distance NG. At the beginning of the motion FQN is of course just 2KQ0/X0
3, and it is 

at the end that FQN = (2KQ0/X0
3)[1 + 2KcNG/0]. With x again defined as the deviation of the cube 

center from its nominal center (which varies from 0 to NG during the detached-aether injection) 

the full expression for quantum-force in the analysis-cube is 

FQN = (2KQ0/X0
3)[1 + 2Kcx/0] (H9) 

The second order effect on the cube quantum-energy due to the cube displacement is now included 

with WQDN = (X0/0)Kc ∫ (2KQ0/X0
3)[1+2Kcx/0] dx = (2KQ0Kc/X0

20)x + (2KQ0Kc
2/X0

20
2)x2 = 

(2KQ0Kc/X0
20)NG + (2KQ0Kc

2/X0
20

2)NG
2.  
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The expansion energy is calculated using Eq. (64), WQC = –4 ∫ KQ/X0
3 dw. From Eq. (H9), FQN/2 

= KQ/X0
3 = (KQ0/X0

3)[1 + 2Kcx/0]. We now use Eq. (62) with NG for P, x = (NGX)w, to obtain 

KQ/X0
3 = (KQ0/X0

3)[1+2Kc(NG/X)w/0]. As specified in Eq. (64) we integrate from w = 0 to w = 

X/2. Hence WQC1 = –4 ∫ KQ/X0
3 dw = –4(KQ0/X0

3) ∫ [1+2Kc(NG/X)w/0] dw = –4(KQ0/X0
3)w – 

4(KQ0/X0
3)Kc(NG/X)w2/0 = –2(KQ0/X0

3)X – (KQ0/X0
3)KcNGX/0.  

Recall that Eq. (64) is for one dimension only. Eq. (73) informs that outside the sphere there is a 

compression Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Also, since it is a compression the quantum-pressure 

will increase and our signs are positive. For each transverse dimension then we obtain WQC2 = 

4(KQ0/X0
3)w + 4(KQ0/X0

3)Kc(NG/X)w2/0 = (KQ0/X0
3)X + (KQ0/X0

3)Kc(NG/X)X2/40, and the 

total compression energy will be twice that, since there are two dimensions. Hence, WQC3 = WQC1 

+ 2WQC2 = –2(KQ0/X0
3)X – (KQ0/X0

3)KcNGX/0 + 2(KQ0/X0
3)X + (KQ0/X0

3)KcNGX/20 = –

(KQ0/X0
3)KcNGX/20. The total quantum-energy of an arbitrary analysis-cube outside the 

spherical region is the undisturbed energy plus the displacement energy plus the expansion energy, 

EQNGO = KQ0/X0
2 + (2KQ0Kc/X0

20)NG + (2KQ0Kc
2/X0

20
2)NG

2 – (KQ/X0
3)KcNGX/20, or, EQNGO 

= (2KQ0/X0
2)[(1/2) + (Kc/0)NG + (Kc

2/0
2)NG

2 – KcNGX/4X00]. Here we have derived the force 

for positive NG. For NG at any angle the work done is the same, so we will replace NG by its 

absolute value, |NG|: 

EQNGO = (2KQ0/X0
2)[(1/2) + Kc|NG|/0 + Kc

2(|NG|/0)2 – Kc|NG|X/4X00] (H10) 

We now recall that the gamma-force will be given by Eq. (216), F = –FTL – FQ. With the tension 

directed inward and the quantum-force directed outward and using Eqs. (H7) and (H9), FTN = 

KT0X0[1 – 2Kcx/0] and FQN = [2KQ0/X0
3][1 + 2Kcx/0], respectively, we obtain FNO = KT0X0[1 – 
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2Kcx/0]r̂ – [2KQ0/X0
3][1 + 2Kcx/0]r̂. And with Eq. (21) above, 2KQ0/X0

3 = KT0X0, we get FNO 

= KT0X0[1 – 2Kcx/0 – 1 – 2Kcx/0]r̂, or,  

FNO = –4KcKT0(X0/0)xr̂ (H11) 

Since the quantum-force exceeds the tension for the negative-attached-aether case, the gamma-

force could be a positive tension, a negative quantum-force or some combination of gamma-

tension and gamma-quantum-force summing to the net force field given in Eq. (H11). We now use 

the same coupling of gamma-force components that was employed in Eqs. (G6) and (G7) 

FNQ = –4Kc(1+KGC)KT0(X0/0)xr̂ (G6) 

FNT = 4KcKGCKT0(X0/0)xr̂ (G7) 

The gamma-quantum-force displacement-work on the cube is Eq. (33), WNQD = (X0/0) Kc ∫ FNQ 

dx = –(X0/0) Kc ∫ 4Kc(1+KGC)KT0(X0/0)x dx = –2Kc
2(1+KGC)KT0(X0/0)2x2 = –

2Kc
2(1+KGC)KT0(X0/0)2NG

2. The gamma-tension-force displacement-work on the cube is Eq. 

(32), WNTD = (X0/0) Kc ∫ FNT dx = –(X0/0) Kc ∫ 4KcKGCKT0(X0/0)x dx = –

2Kc
2KGCKT0(X0/0)2x2 = –2Kc

2KGCKT0(X0/0)2NG
2. For both the tension and quantum-force 

components, work is done on the cube displacement, lowering the field energies, as discussed in 

sections D.3.5 and H.4.  

The expansion energy is now calculated using Eq. (63), WTC = 2 ∫ FT dw. From Eq. (G6), FNQ = 

–4Kc(1+KGC)KT0(X0/0)x. We now use Eq. (62) with NG for P, x = (NGX)w, and for the gamma-

quantum-force we have FNQ = –4Kc(1+KGC)KT0(X0/0)(NGX)w. As specified in Eq. (63) we 

integrate from w = 0 to w = X/2, and the work is positive for expansion against the negative 

quantum-force component, WNQC1 = 2 ∫ 4Kc(1+KGC)KT0(X0/0)(NGX)w dw = 
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4Kc(1+KGC)KT0(X0/0)(NGX)w2 = Kc(1+KGC)KT0(X0/0)NGX. For the gamma-tension we have 

FNT = 4KcKGCKT0(X0/0)x, and we again use x = (NGX)w to get FNT = 

4KcKGCKT0(X0/0)(NGX)w. As specified in Eq. (63) we integrate from w = 0 to w = X/2 and 

the work is negative for expansion against the negative gamma-tension. Hence WNTC1 = –2 ∫ 

4KcKGCKT0(X0/0)(NGX)w dw = –4KcKGCKT0(X0/0)(NGX)w2 = –KcKGCKT0(X0/0)NGX. 

Recall that Eq. (63) is for one dimension only. Eq. (73) informs that outside the sphere there is a 

compression Y = X/2 for each of the other two dimensions and for those dimensions we integrate 

from 0 to Y/2, which is equal to 0 to X/4. Also, since it is a compression we will do negative 

work against the negative gamma-quantum-force and we will do positive work against the 

negative-gamma-tension. For each transverse dimension then we obtain a gamma quantum-force 

work of WNQC2 = –4Kc(1+KGC)KT0(X0/0)(NGX)w2 = –Kc(1+KGC)KT0(X0/0)NGX/4. Similarly 

we obtain a gamma tension work of WNTC2 = 4KcKGCKT0(X0/0)(NGX)w2 = 

KcKGCKT0(X0/0)NGX/4. 

Adding the radial expansion energies to the transverse compression energies, and since there are 

two transverse dimensions we get WNQC3 = WNQC1 + 2WNQC2 = Kc(1+KGC)KT0(X0/0)NGX – 

Kc(1+KGC)KT0X0NGX/20 = Kc(1+KGC)KT0X0NGX/20 and WNTC3 = WNTC1 + 2WNTC2 = –

KcKGCKT0(X0/0)NGX + KcKGCKT0X0NGX/20 = –KcKGCKT0X0NGX/20. 

The total gamma-energy of an arbitrary analysis-cube outside the spherical region is the sum of 

the displacement energies (WNTD and WNQD) and expansion energies (WNTC3 and WNQC3), ENGO 

= –2Kc
2(1+KGC)KT0(X0/0)2NG

2 – 2Kc
2KGCKT0(X0/0)2NG

2 + Kc(1+KGC)KT0X0NGX/20 – 

KcKGCKT0X0NGX/20 = –2Kc
2(1+2KGC)KT0(X0/0)2NG

2 + KcKT0X0NGX/20. Here we have 
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derived the force for positive NG. For NG at any angle the work is the same, and we replace NG by 

its absolute value, |NG|, ENGO = KT0X0
2[–2Kc

2(1+2KGC)(|NG|/0)2 + Kc|NG|X/2X00], or 

ENGO = KT0X0
2[–2Kc

2(|NG|/0)2 – 4Kc
2KGC(|NG|/0)2 + Kc|NG|X/2X00] (H12) 

The total energy is found by summing the tension, quantum and gamma energies, Eqs. (H8), (H10) 

and (H12). ENGO = KT0X0
2[(1/2) – Kc|NG|/0 + Kc

2|NG|2/0
2 – Kc|NG|X/4X00] + (2KQ0/X0

2)[(1/2 

+ Kc|NG|/0 + Kc
2|NG|2/0

2 – Kc|NG|X/4X00] + KT0X0
2[–2Kc

2(|NG|/0)2 – 4Kc
2KGC(|NG|/0)2 + 

Kc|NG|X/2X00]. Next, we use Eq. (22), 2KQ0/X0
2 = KT0X0

2, to get ENGO = KT0X0
2(1 – 

4Kc
2KGC|NG|2/0

2), which is Eq. (226). Thus we see that Eq. (226) holds both inside and outside 

the sphere of extrinsic-energy. 

H.4. The Physical Nature of the Gamma-Force Outside a Spherical Negative-Attached-

Aether Region Containing Extrinsic-Energy. Outside a sphere of immersed extrinsic-energy, 

the negative-attached-aether will be expanded in the radial direction rather than compressed. The 

radial expansion leads to a change in the sign of the work done from what was considered in section 

G.4 where there was a radial compression for the non-displacement work. The other difference 

from section G.4 is that we now no longer have any extrinsic-energy within the analysis-cubes to 

initiate the gamma forces. Instead, the gamma forces will be given by Eqs. (G6) and (G7) because 

of the continuity of those forces from the region inside the sphere. Beyond those two changes, the 

discussion of section G.4 remains valid outside the sphere. 
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Appendix I – A Sun in Motion Through the Aether 

I.1. A Sun Not at Rest with the Aether 

Up to now we have done our analysis from a frame of reference at rest with respect to the aether. 

Also, our perihelion and light bending calculations have assumed that the sun is at rest with respect 

to the aether. We will now investigate what happens when the sun moves with respect to the aether. 

I.1.1. Lorentz invariance of electrodynamics. Due to the nature of the Lorentz Transformation 

of space and time, an analysis from the aetherial rest frame is all that is needed for 

electromagnetism, as it is well known that Maxwell’s Equations and the Lorentz Force Equation 

are invariant in form under a Lorentz Transformation. In frames moving with respect to the aether, 

meter sticks shrink, clocks slow down, and the electromagnetic fields transform in just the right 

way so that the equations retain their form. A rest frame observer will say that the moving frame 

observers have the wrong length, time and field measurements, but the moving frame observers 

will say that it is the rest frame observers who are incorrect. This situation led to Poincare’s 

proposal that there might be a relativity principle involved. However, herein we take the pre-

relativistic viewpoint that the rest frame observer is the only one making correct measurements. 

Nonetheless, once the rest frame measurements are established, all observers will agree that the 

Lorentz transformations can be made from frame to frame, and therefore once the equations are 

established in the preferred frame they are established in all frames. Electrodynamic experiments 

in all frames are therefore understood, and a derivation of the electrodynamics equations is only 

needed from the single aetherial rest frame, as provided above. 

I.1.2. Gravitation cannot assume Lorentz invariance. For the gravitational equations derived 

above we can no longer rely on Lorentz invariance, and we must now analyze what happens when 

entities and frames are moving with respect to the aether. As far as moving observers are 
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concerned, the analysis is simple; we just apply the Lorentz transformations from frame to frame. 

However, for moving objects, other effects enter in and these effects will now be investigated. 

I.2. Effect on the Sun and ∇SUN due to Motion Through the Aether. We now turn to a 

calculation of the extrinsic-energy-flow effect on the sun as it moves through the aether. We will 

make the assumption that the aetherial rest frame coincides with the frame wherein the cosmic 

background radiation is most isotropic; while there is no a priori reason that this must be true, it is 

a reasonable guess. This leads to a velocity of the sun with respect to the aether of v/c≈1.23x10–3 

[I1]. We will also assume that the potential  propagates along with the sun. 

I.2.1. |∇SUN(RSUN)| Near the Surface of a Solid Sun Moving Through the Aether. Consider 

now the effect of extrinsic-energy-flow on ∇SUN. To calculate the flow effect, we refer again to 

Eqs. (302) and (303) for the expansion of the analysis-cubes: 

X3X/X0 = X3Y/X0 = (X3 – X0)/X0 ≈ [KG1–KG2]E/4 + KF4FE/4 (302) 

X3Z/X0 = (X1 – X0)/X0 ≈ [KG1–KG2]E/4 (303) 

We start by assuming the sun to be a rigid, spherical, body. (This obviously incorrect assumption 

will be relaxed below, but it is a useful way to begin our analysis.) With every analysis-cube within 

the sun’s boundary expanding via Eqs. (302) and (303), and recalling Eq. (242), PGL = –0∇G/20, 

and with PGL the integral of X (the cubes expand and their expansions add into the displacement 

PGL), we see that ∇SUN is proportional to the integral of Eqs. (302) and (303). Hence we see that 

∇SUN becomes oblate; ∇SUN is larger in the X and Y directions than it is in the Z direction by the 

factor ([KG1–KG2]E/4 + KF4FE/4)/([KG1–KG2]E/4) = 1 + KF4FE/[KG1–KG2]E. 

Now, notice that without the KF4FE/4 term of Eq. (302) ∇SUN is radially outward and equal in 

magnitude everywhere at the sun’s surface. Since PGL = –0∇G/20 is the distance that the aether 
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is displaced, we see that the aether originally at the sun’s surface will be expanded to lie on the 

sphere x2 + y2 + z2 = a0
2 (if there is no flow effect) and here the radius a0 is 

a0 = RSUN+PGL(RSUN) = RSUN–0|∇SUN(RSUN)|/20 = RSUN(1+G/60) (no flow effect) (I1) 

Eq. (I1) makes use of Eq. (213) for a spherical source of extrinsic-energy, PGOUT = P0R0
2r̂/r2 = 

(G/60)R0
3r̂/r2 (r > R0), which at R0 = RSUN is PGL = (G/60)RSUNr̂. 

Assume the sun is centered on the z axis. Including the KF4FE/4 term causes an increase in the x 

and y components of ∇SUN(RSUN) and no increase in the z component. We will next show that this 

leads to the sphere of radius a0 being distorted into an oblate spheroid that has an intersection with 

the xz plane of  

x = (1 + )(a0
2 – z2)1/2 (I2) 

In Eq. (I2), we define  as  

 = KF4FE/4 (I3) 

Squaring Eq. (I2), x2 = (1 + )2(a0
2 – z2), or x2/(1 + )2 = (a0

2 – z2), or x2/(1 + )2 + z2 = a0
2, which 

is the equation of an ellipse. Now, x2/(1 + )2 = x2/(1 + 2 + 2) ≈ x2(1 – 2), to first order in . 

Making the substitutions x = rsin and z = rcos leaves x2(1 – 2) + z2 = a0
2 = r2sin2(1 – 2) + 

r2cos2 = r2 – 2r2sin2 = a0
2 = r2(1 – 2sin2), or,  

r = a0/(1 – 2sin2)1/2 ≈ a0(1 + sin2) = a0(1 +  – cos2) (I4) 

Now set 

a0 = a – 2a/3 (I5) 

Eqs. (I4) and (I5) lead to r = (a – 2a/3)(1 +  – cos2) = (a + a – acos2 – 2a/3) = (a – acos2 

+ a/3) = a(1 – cos2 + /3) = a[1 – (1/3)(3cos2 – 1)] to first order in . And using the second 

Legendre polynomial P2(x) = (1/2)(3x2 – 1), we obtain 
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r = a[1 – (2/3)P2(cos)] (I6) 

Eq. (I6) is the equation of the intersection of an oblate spheroid and the xz plane. Due to the 

symmetry of x and y found in Eq. (302) we see that Eq. (I6) can apply to any plane containing the 

z axis, and therefore Eq. (I6) applies more generally; Eq. (I6) is the equation for the boundary of 

an oblate-spheroid in spherical coordinates. Eq. (I6) is the expression for the position of the surface 

of the aether that would have been at the sun’s surface were it not for the tension-modification 

caused by the extrinsic-energy and the extrinsic-energy-flow. Again recalling Eq. (242), PGL = –

0∇G/20, we obtain –0∇rSUN/20 = r – RSUN = a[1 – (2/3)P2(cos)] – RSUN = a[1 – (1/3)(3cos2 

– 1)] – RSUN ≈ (a0 + 2a0/3)[1 – (1/3)(3cos2 – 1)] – RSUN. (The last equality uses Eq. (I5), a0 = a 

– 2a/3 = a(1 – 2/3), or a = a0/(1 – 2/3) ≈ a0 + 2a0/3. ∇r is the radial component of ∇.) With this, 

–0∇rSUN(RSUN)/20 = a0 + 2a0/3 – (a0/3)(3cos2 – 1) – RSUN to first order in . And now, from 

Eq. (I1) a0 – RSUN = RSUNG/60, leaving –0∇rSUN(RSUN)/20 = RSUNG/60 + 2a0/3 – 

(a0/3)(3cos2 – 1) or 

–∇rSUN(RSUN) = RSUNG/30 + 40a0/30 – (20a0/30)(3cos2 – 1) (I7) 

Eq. (I7) is the equation for the aetherial displacement, and it is what we’d expect. In the z direction 

cos = 1 and Eq. (I7) becomes –∇rSUN(RSUN) = RSUNG/30, which is equal to the case with no 

flow, while in the x direction cos = 0 and for that case –∇rSUN(RSUN) = RSUNG/30 + 20a0/0, 

an increase in the displacement of a0 over the no flow case. (The displacement is PGL = –

0∇rSUN/20 = 0RSUNG/600 + a0.) From Eq. (302) we see X3X/X0 from the flow effect is 

KF4FE/4 = , and therefore each analysis cube will expand by X0, and the entire sphere of radius 

a0 will expand by a0. This shows that Eq. (I7) verifies our use of Eq. (I1). 

I.2.2. Field and Potential of a Uniform-Mass-Density Oblate-Spheroid. Next, consider the 

potential outside of a uniform-mass-density oblate-spheroid (UMD), [I2] 
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UMD = –GM/r + [0.4GMa2/r3]2P2(cos) = –GM/r + [0.2GMa2/r3]2(3cos2 – 1) (I8) 

To find the field ∇UMD note that in spherical coordinates we have ∇ = r̂∂/∂r + q̂(1/r)(∂/∂), 

where r̂ is a unit vector in the r direction and q̂ is a unit vector in the  direction, and hence: 

∇UMD = r̂∂UMD/∂r + q̂(1/r)(∂UMD/∂) 

= r̂GM/r2 – r̂[0.6GMa2/r4]2(3cos2 – 1) – q̂[1.2GMa2/r4]2cossin (I9) 

I.2.3. ∇SUN(r) of a Solid Sun for r > RSUN.  Once outside of the extrinsic-energy and extrinsic-

energy-flow of the sun, Laplace’s Equation, ∇2SUN = 0, will apply for the primary gravitational 

effects. (∇2SUN represents the divergence of the displacements of the walls of an aetherial analysis-

cube. Without additional forces inside the cube, the density will remain at its nominal value 

resulting in Laplace’s Equation.) Based on Eq. (I9) and the fact that Eq. (I7) at the sun’s boundary 

is an oblate spheroid, we will guess at a solution for SUN and hence ∇SUN for the region r > RSUN: 

SUN = –C4/r + (C5/r3)[(1/2)(3cos2 – 1)]  (r > RSUN) (I10)  

∇SUN = r̂∂SUN/∂r + q̂(1/r)(∂SUN/∂) 

= r̂C4/r2 – r̂[3C5/2r4](3cos2 – 1) – q̂[3C5/r4]cossin  (r > RSUN) (I11) 

In the above, C4 and C5 are arbitrary constants we will used to fit our solution. We can now verify 

that Eq. (I10) satisfies ∇2SUN = 0: 

∇2SUN = (1/r2)∂/∂r(r2∂/∂r) + (1/r2sin)∂/∂(sin∂/∂)  

= (1/r2)∂/∂r(r2[C4/r2 – (3C5/2r4)(3cos2  – 1)] + (1/r2sin)∂/∂[(sin)(C5/r3)(3cos)(–sin)  

= (1/r2)∂/∂r([C4 – (3C5/2r2)(3cos2  – 1)] – (1/r2sin)∂/∂([3C5/r3]cossin2)  

= (1/r2){–(–2)(3C5/2r3)(3cos2  – 1)]} – (1/r2sin)([3C5/r3]{–sin3+ 2sincos2)  

= (3C5/r5)(3cos2  – 1) – ([3C5/r5){–sin2+ 2cos2)  

= (3C5/r5)(3cos2  – 1) – ([3C5/r5){–(1 – cos2+ 2cos2}  
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= (3C5/r5)(3cos2  – 1) – (3C5/r5){3cos2 – 1} =  

∇2SUN = 0 (I12) 

The values of the constants C4 and C5 are found by setting the magnitude of the radial component 

of Eq. (I11) consistent with Eq. (I7) at some value of r, r = a1: C4/a1
2 – [3C5/2a1

4](3cos2 – 1) = –

RSUNG/30 – 40a0/30 + (20a0/30)(3cos2 – 1). From this, we see that the settings 3C5/2a1
4 = 

–(20a0/30) and C4/a1
2 = –RSUNG/30 – 40a0/30 do indeed result in agreement between the 

radial components of Eqs. (I7) and (I11) with the sign difference because of the conventions 

chosen, as can be seen by comparing the leading terms of Eqs. (245) with Eq. (I10). This setting 

of values is the application of the boundary condition set up by the extrinsic-energy and extrinsic-

energy-flow. Only the radial component of (I11) is employed so far because there is no  (polar 

angle) dependence in Eq. (I7). The polar component of (I11) is discussed next. 

I.2.4. ∇SUN(r) of a Fluid Sun for r > RSUN.  A more realistic sun would include modeling of a 

plasma. Recall now Eq. (237), FG = QG∇G, and recall that QG is a quantity proportional to the 

extrinsic-energy of the body experiencing the force. If ∇G of Eq. (237) is determined by Eq. (I11) 

we see that there would be both an inward radial force as well as a polar force directed away from 

the poles. The radial force will be balanced by the outward plasma pressure (collisions will 

maintain the plasma density). In the absence of other effects (such as rotation) there will originally 

be no counterbalancing polar force. In this situation, the plasma particles will move away from the 

poles until a new hydrostatic equilibrium is obtained between the gravitational field and plasma 

pressure leading to an oblateness in the sun. 

Note that the Lorentz contraction will also play a role in determining ∇SUN. While ∇SUN is a 

disturbance in the fixed aether, the sun itself, which is the source for SUN, is moving through the 

aether. And the sun is subject to the electromagnetic forces that determine its size, forces that obey 
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the Lorentz Transformation. Therefore, the sun will become slightly oblate (as observed from the 

aetherial-rest-frame) in its direction through the aether. To leading order in v/c (which is v2/2c2) 

this Lorentz contraction oblateness is on the order of 7x10–7. 

The sun’s rotation also affects its oblateness. The measured value of the oblateness is a complicated 

topic and it involves an interplay between theory and experiment [I3].  

For our model, we expect a gravitational oblateness of  = KF4FE/4 as given by Eq. (I3). We now 

recall Eqs. (385) and (386) for our two proposed possibilities for KF4: 

KF4KE = (2.596x10-23 s2/kg)0/KGCKc (385) 

KF4MO = (2.596x10-23 s2/kg)0/KGCKcc (386) 

As can be seen, Eqs. (385) and (386) involve our three free parameters 0, KGC and Kc. And so we 

conclude that the extrinsic-energy flow induced oblateness of a moving sun cannot rule out either 

the kinetic-energy or total-energy flow effects described in section D.16. (Although it will lead to 

constraints on the values of our three free parameters.) And we recall from section D.16 that other 

speculations for KF4 are possible as well. 

I.3. Energy Flow Effect on the Advance of the Perihelions. 

I.3.1. Evaluating ∇CMQGPL for the perihelion analysis. Eq. (331) introduces the energy-flow 

effect that can affect the advance of the perihelions. And also, the planetary and sun motion through 

the aether should now be included in the perihelion calculations. With the sun and the sun’s 

secondary masses being defined as the central mass MCM, Eq. (247) yields ∇CM = –

(GCMRCM
3/3r20)r̂ for r > RCM. With Eq. (193), G = 3[KG1–KG2]E0/2, this becomes ∇CM = –

([KG1–KG2]ECM0RCM
3/2r20)r̂. The extrinsic-energy of the central mass will be ECM = 

(4/3)RCM
3ECM, or RCM

3ECM = 3ECM/4, resulting in 

∇CM = –(3[KG1–KG2]0ECM/8r20)r̂ (I13) 
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The central mass includes that of the sun, MSUN, as well as the masses found in Eqs. (268) and 

(271), which are, respectively, M1OUT = 4KG5MMr – 3KG5MMR and M2OUT = 5KG6(MM)2/r – 

6KG6(MM)2/R. Recalling Eq. (274), MEFF = MM – 3KG5MMR – 6KG6M
2M2/R, we can now 

express the central mass extrinsic-energy as ECM = MEFFc2 + 4KG5MMc2r + 5KG6M
2M2c2/r, 

leaving 

∇CM = –(3[KG1–KG2]0/80)(4KG5MMc2/r + MEFFc2/r2 + 5KG6M
2M2c2/r3)r̂ (I14) 

Next, the planet will be treated as a moving sphere of radius RPL and mass MPL. In this modeling, 

recalling Eq. (236), QG = KGCVsphereG, QGPL = KGC(4/3)RPL
3GPL and with Eq. (193), G = 3[KG1–

KG2]E0/2, QGPL = 2KGCRPL
3[KG1–KG2]EPL0. And with EPL = PLMPLc2/[(4/3)RPL

3], 

QGPL = 3KGC[KG1–KG2]PLMPLc20/2 (I15) 

Eqs. (I14) and (I15) lead to ∇CMQGPL = –(9KGC[KG1–KG2]20
2PLMPLc2/160)(4KG5MMc2/r + 

MEFFc2/r2 + 5KG6M
2M2c2/r3)r̂. Recalling Eq. (251), GN = 9KGC[KG1–KG2]20

2c4/160, we obtain  

∇CMQGPL = –GNPLMPL(4KG5MM/r + MEFF/r2 + 5KG6M
2M2/r3)r̂ (I16) 

I.3.2. Perihelion Advance Including the Kinetic-Energy-Flow Effects. Consider again Eq. 

(331), FsphereGF = QG[(1+CF/CM)∇G – (CF/CM)(v̂ . ∇G)v̂]. Using Eq. (330), CF/CM = KF4FE/[KG1–

KG2]E, and Eq. (339), KF4KE = [KG1–KG2], we get CF/CM = FEKE/E. The planetary kinetic energy 

density PLKE is the kinetic energy divided by the volume, PLKE = (PL – 1)MPLc2/V, while the 

extrinsic-energy density E is PLMPLc2/V. Hence CF/CM = FEKE/E = (1–1/PL) and this allows 

Eq. (331) to be expressed as FPL_SUN_KE = QG[(1+1–1/PL)∇G–(1–1/PL)(v̂ . ∇G)v̂] or, since here 

we have QG = QGPL and ∇G = ∇CM 

FPL_SUN_KE = (2 – 1/PL)QGPL∇CM – (1 – 1/PL)(v̂ . QGPL∇CM)v̂ (I17) 
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Now we can substitute (I16) into (I17) to get the equation for the force on a planet including the 

sun and planetary extrinsic-energies and extrinsic-energy flows 

FPL_SUN_KE = 

–GNPLMPL(4KG5MM/r+MEFF/r2+5KG6M
2M2/r3)[(2–1/PL)r̂–(1–1/PL)(v̂ . r̂)v̂] (I18) 

I.3.3. Third Numerical Integration Approach for Evaluating the Perihelion Advance. 

(Including Sun and Planetary Kinetic-Energy-Flow Effects.) Eq. (I18) can be used to calculate 

the advance of the perihelions. In our earlier numerical integrations of section D.13, the force in 

the x (y) direction is found by FX = [x/r]F (FY = [y/r]F) where F is given by Eq. (275) as FGOUT = 

–GNmm(MEFF/r2 + 4KG5MM/r + 5KG6M
2M2/r3)r̂. Eq. (I18) complicates things, as both the 

magnitude and the direction of the force changes. And, since the sun is now also moving through 

the aether, additional complications arise. 

The third numerical integration program uses x and y as the plane of the ecliptic, and we assume 

the sun’s velocity through the aether to be in the y direction for our work here, as we merely want 

an estimate. The motion of the sun and planets was integrated from the aether frame. Evaluating 

Eq. (274), MEFF = MM – 3KG5MMR – 6KG6M
2M2/R, requires evaluation of 3KG5MMR and 

6KG6M
2M2/R. From Eq. (276). KG5 ≈ 10-21 m-1 and with RSUN = 6.9634x108 m, 

3KG5MMSUNR/MSUN = 3KG5RSUN ≈ 2.089x10-12. With Eq. (293) giving KG6 = 8.9167x10-28 m/kg, 

and with RSUN = 6.9634x108 m and MSUN = 1.9885x1030 kg, 6KG6MSUN/RSUN = 1.5668x10-5. 

Hence, we can set MEFF = MMSUN = MSUN to within the certainty of the sun’s mass. 

The results of the third numerical integration agree with the first and second numerical integrations 

through the fourth decimal place. With such a small difference, effect of the sun moving through 

the aether at v/c ≈ 1.23x10–3 is not presently detectable from data of the perihelion advances. (See 

section I.3.6 for comments on the calculation.) 
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I.3.4. Perihelion Advance Including the Total-Energy-Flow Effect. Again consider Eq. (331), 

FsphereGF = QG[(1+CF/CM)∇G – (CF/CM)(v̂ . ∇G)v̂]. Again using Eq. (330), CF/CM = KF4FE/[KG1–

KG2]E, and now using Eq. (341), KF4MO = [KG1–KG2]/c, we get CF/CM = FEMO/cE. The planetary 

total energy density PLMO flow is the total energy multiplied by the velocity divided by the 

volume, PLMO = vPLMPLc2/V, while the extrinsic-energy density E is PLMPLc2/V. Hence CF/CM 

= FEMO/cE = v/c this allows Eq. (331) to be expressed as FPL_SUN_MO = QG[(1+v/c)∇G – (v/c)(v̂ 

. ∇G)v̂] or, since here we have QG = QGPL and ∇G = ∇CM 

FPL_SUN_MO = (1+v/c)QGPL∇CM – (v/c)(v̂ . QGPL∇CM)v̂ (I19) 

Now we can substitute (I16) into (I19) to get the equation for the force on a planet including the 

sun and planetary extrinsic-energies and extrinsic-energy flows 

FPL_SUN_MO = 

–GNPLMPL(4KG5MM/r+MEFF/r2+5KG6M
2M2/r3)[(1+v/c)r̂–(v/c)(v̂ . r̂)v̂] (I20) 

I.3.5. Fourth Numerical Integration Approach for Evaluating the Perihelion Advance. 

(Including Sun and Planetary Total-Energy-Flow Effects.) Eq. (I20) can be used to calculate 

the advance of the perihelions. The fourth numerical integration program proceeds similarly to the 

third (see section I.3.3) only changing the factor of CF/CM to use a total energy flow assumption 

rather than a kinetic energy flow assumption. The results of the fourth numerical integration were 

not reliable, as convergence was not obtained when the integration step size was decreased. 

I.3.6. Need for Improved Numerical Integration Evaluation of the Perihelion Advance. The 

numerical evaluations described in sections D.13.3, D.13.4, I.3.3 and I.3.5 are all quite rudimentary 

and in need of improvement. They were performed on a simple PC, using java BigDecimals. A 

series of runs were performed by decreasing the step size used in the numeric integration, and for 

the evaluations described in section D.13.3 the results converged nicely as the number of steps was 
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increased through the orders of 100,000 to 1 million to 10 million to 100 million. Convergence of 

the results described in section D.13.4 nicely converged up to the order of 10 million steps, but 

showed degradation in improvement when increasing to the order of 100 million steps. The results 

described in section I.3.3 showed improvement degradation at the order of 10 million steps, and 

the results described in section I.3.5 showed little evidence of conversion. 

Also, only the two-body problem was investigated, and it was done under very simple assumptions. 

The study of the ephemerides can become quite detailed, including thousands of objects, which 

are not purely spherical. Such studies can use computational resources and codes far superior to 

the admittedly rudimentary treatments described herein. A full calculation of the perihelion 

advance is outside the scope of this presentation. 

I.4. References for Appendix I. 

[I1] https://arxiv.org/abs/1807.06205 

[I2] https://farside.ph.utexas.edu/teaching/celestial/Celestial/node19.html. 

[I3] J. P. Rozelot and C. Damiani, Eur. Phys. J. H, 36, 407-436 (2011). 

 

Appendix J – Dense Stellar Objects 

The celestial bodies discussed in the main text, such as the sun and planets, had densities that led 

to field-masses that were small compared to the physical mass of the object. Furthermore, in the 

main text we were concerned with interactions between celestial bodies and not their internal make 

up. (Since our concern was the forces between bodies we were free to approximate that the objects 

were constant density spheres, since the internal mass distribution did not affect the physics of 

interest.) However, we found in section E.2 that neutron star parameters led to conditions where 

our treatment broke down. In this Appendix J we will investigate situations where the second-
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field-mass can be a significant fraction of the physical mass, and we will also evaluate more 

realistic internal models of dense stellar objects.  

As we look at different stellar objects within our universe, we find different ways that gravitational 

collapse is prevented. In stars like our sun, internal gravity is resisted by pressure gradients from 

ongoing nuclear fusion. In white dwarfs, the resisting pressure is supplied by electron degeneracy, 

and in neutron stars by neutron degeneracy. But in the theory proposed herein, we see that a new 

term must be included in our analysis, as we need to include the effects of the negative-field-mass. 

(Note that in what follows we will often use the term negative-field-mass for the second-field-

mass, since it is a negative mass. This is in contrast to the first-field-mass which is a positive mass 

commonly known as dark matter.) 

J.1. A Particles-in-a-Box Approach for Analyzing Dense Stellar Objects. Here we will develop 

a simple particles-in-a-box quantum mechanical model for dense stellar objects. Our first aim is to 

achieve a model that is in reasonable agreement with standard models of white dwarfs when 

negative-field-mass is ignored. From there we will be able to introduce and evaluate the negative-

field-mass effects on white dwarfs, and once that is done we will extend our analysis to objects of 

even higher density. To keep things simple, some less important physical realities will be set aside 

for future study. 

Our model will consider a cubic box as an analytical cell, and we will consider the dense stellar 

objects to be comprised of a large number of such cells. This model has a simplistic advantage 

over the completely degenerate and quantum-relativistic-thermodynamic approach of 

Chandrasekhar. Our simpler approach will aid our initial understanding of the problem, but another 

advantage is that it is a more realistic modeling. We postulate that upon a momentum exchange a 

quantum wave-function will collapse to a region whose size is h/2 divided by the momentum 
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exchanged. Such collapses happening within the dense stellar objects will essentially form 

boundaries for individual particles and we model these boundaries as the boundaries of our boxes. 

Rather than states occupying the entire object in a fully degenerate way, we instead will have states 

of significantly smaller physical size, each modelled as a particle-in-a-box. A further attribute of 

this treatment is that we can model heat within the system. While the thermal energies within dense 

stellar objects are often small enough that the large majority of lowest energy states are occupied, 

the thermal temperature is still far from zero. And, as seen below, smaller bounding boxes will 

lead to higher energies as compared to larger boxes, and hence this model could be used to model 

temperature within the system, although we will not complete those details here. 

Our aim is to model dense stellar objects at their most elemental level, and since white dwarf stars 

are in a substantially electron degenerate state, and neutron stars are in a substantially neutron 

degenerate state, we have a situation wherein the elemental constituents of both are fermions. The 

most elemental level of each is thus a single fermion, and we can have two fermions in nearly 

identical states, each with a spin opposite of the other. Thus we will consider a model that builds 

up from a representative cubic box that contains two fermions, and a collection of those boxes will 

provide the degenerate pressure which supports the system against gravitational collapse. This 

approach requires definition of a representative analytical cell, and this is done below. 

J.2. Lorentzian Solutions for Particles-in-a-Box. In an earlier work[J1] we have derived the 

following equation for particles wherein their energy becomes appreciable with respect to their 

rest-mass energy: 

–h2c2∇2 = [En
2 – 2EnV + V2 – m2c4]. (J1) 

(Reference [J1] uses the term “high velocity” instead of the term “relativistic” because we are now 

considering high energy particles within an absolute theory. Here we will use “Lorentzian” for 
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such conditions.) In Eq. (J1) En is the energy of the nth state, V is the potential energy of the system 

being analyzed, and mc2 is the rest mass energy of the particle. 

For the x dimension of particles-in-a-box, V equals zero between x=0 and x= and V is infinite 

otherwise. With a similar condition in the other two dimensions Eq. (J1) becomes  

–h2c2∇2 = [En
2 – m2c4]  (for regions inside a cubic square well potential)  (J2) 

A solution to Eq. (J2) is  

 = sin(nxx/)sin(nyy/)sin(nzz/)  (J3) 

Substituting Eq. (J3) into Eq. (J2) we obtain (nx
2 + ny

2 + nz
2)h2c22/2 = [En

2 – m2c4], or 

EnSO = [(nx
2+ny

2+nz
2)h2c22/2 + m2c4]1/2 (J4)  

In Eq. (J4) the subscript n is now associated with the nx, ny, and nz of the solution given in Eq. (J3); 

the subscript S indicates we have a box holding a single fermion, and the O subscript indicates we 

are dealing with one spin state. (Note that for m2c4 >> h2c22/2 we get EnSO = 

mc2[(nx
2+ny

2+nz
2)h2c22/2m2c4 + 1]1/2 ~= mc2 + (nx

2+ny
2+nz

2)h2c22/2mc22 = mc2 + 

(nx
2+ny

2+nz
2)h22/2m2, which is correct in the low velocity limit. This agrees with Eq. (4), EQ = 

KQ0/Q
2, if we set KQ0 = (nx

2+ny
2+nz

2)h22/2m and recognize that Eq. (4) has  = Q, and that we 

now have three dimensions, and that Eq. (4) does not explicitly mention the mc2 term.)  

The simple model of single particles each in an individual box is not a very good approximation 

for substantially degenerate situations. In the fully degenerate case, the box becomes very large in 

size (it becomes the size of the whole star). And larger boxes will lead to lower average energies 

for the fermions within them than will a collection of small boxes of the same total volume. To see 

this, consider eight boxes wherein we store 16 fermions, and where we’ll define C as the length 

of each side of the eight individual boxes. The total ground state energy for eight individual boxes 

will be E = 16[3h2c22/C
2 + m2c4]1/2, since for each fermion we will have nx = ny = nz = 1 (the 3) 
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and we will have two spin states within each of our 8 boxes (the 16). But now consider the situation 

where we put all of our fermions into a single box with each side having a length 2C. (This larger 

box has the same volume as the total volume of our original eight boxes.) For the larger box the 

lowest energy will have 2 fermions in the nx = ny = nz = 1 state, each with an energy of [3h2c22/4C
2 

+ m2c4]1/2. Six fermions will be in a state where one of the n values is 2 and the others 1, each with 

an energy of [6h2c22/4C
2 + m2c4]1/2. Six fermions will be in a state where one of the n values is 

1 and the others 2, each with an energy of [9h2c22/4C
2 + m2c4]1/2. And two fermions will be in a 

state where one of the n values is 3 and the others 1, each with an energy of [11h2c22/4C
2 + 

m2c4]1/2. Hence, the total energy in our larger box is 2[3h2c22/4C
2 + m2c4]1/2 + 6[6h2c22/4C

2 + 

m2c4]1/2 + 6[9h2c22/4C
2 + m2c4]1/2 + 2[11h2c22/4C

2 + m2c4]1/2. It can be seen that the total energy 

of the larger box is considerably smaller than the total energy of the 8 smaller boxes. 

In the general case, the larger the box, the lower the energy will be as compared to a collection of 

individual small boxes of the same volume. For a box that has each edge equal to NC, where N is 

some integer value, the energy of any specific state is given by Eq. (J4) with  = NC and the total 

energy within the box will be the sum of the energies of the individual states: 

EnMO = XYZ [(nx
2+ny

2+nz
2)h2c22/N2C

2 + m2c4]1/2 (J5) 

In Eq. (J5) the M subscript indicates that we now have multiple fermions in our bigger box, and 

the O subscript indicates we are still only considering one spin state. In Eq. (J5) nx, ny, and nz can 

take on values from 1 to an arbitrarily high number. To find the ground state energy within the 

box, we have written a computer code (named QuantumStates1) to iterate through all possible 

values of nx, ny, and nz up to an upper limit where each of nx, ny, and nz are allowed to go to 1.8 

times N, and then we sort by energy and keep the smallest N3 energies. (QuantumStates1 finds the 

lowest total energy of a box containing N3 particles, considering only a single spin state.) The 
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multiplier limit of 1.8 arises because the state nx = 1.7N, ny = 1, nz = 1 has an energy proportional 

to 2.89N2 + 2, while the state nx = N, ny = N, nz = N has an energy proportional to 3N2. Now 2.89N2 

+ 2 will be less than 3N2 for N >= 5. Hence, for N >= 5, we will achieve a lower energy if we fill 

the state nx = 1.7N, ny = 1, nz = 1 than if we fill the state nx = N, ny = N, nz = N, so we must allow 

for such possibilities when looking for the ground state. However, the state nx = 1.8N, ny = 1, nz = 

1 has an energy proportional to 3.24N2 + 2, which is always greater than 3N2, so we need not 

consider states with nx, ny or nz >= 1.8N when looking for the energy of the ground state.  

In QuantumStates1 we assume the kinetic energy is small compared to the rest mass energy. In 

this limit Eq. (J4) is EnSO = mc2 + (nx
2+ny

2+nz
2)h2c22/2mc22. The kinetic energy is therefore 

(nx
2+ny

2+nz
2)h2c22/2mc22. For an individual cell we have  = C and for the big box we have  = 

NC. The ratio of the total kinetic energy in the big box to the kinetic energy of N3 individual cells 

is thus XYZ (nx
2+ny

2+nz
2)h2c22/2mc2(NC)2 (the large box total kinetic energy) divided by 

N33h2c22/2mc2C
2 (the kinetic energy of N3 individual cells). This gives fQBTL = [XYZ 

(nx
2+ny

2+nz
2)h2c22/2mc2(NC)2]/[N33h2c22/2mc2C

2], or,  

fQBTL = XYZ (nx
2+ny

2+nz
2)/3N5 (J6) 

In Eq. (J6), fQBTL introduces the quantum-box total kinetic energy reduction factor in the low 

energy limit, and the sum is over all of the squared quantum numbers nx
2, ny

2, and nz
2 for the lowest 

energy values contained in the big box.  

The maximum kinetic energy divided by the ground state individual cell kinetic energy is 

[(nxM
2+nyM

2+nzM
2)h2c22/2mc2(NC)2]/[3h2c22/2mc2C

2] = (nxM
2+nyM

2+nzM
2)/3N2, or 

fQBML = (nxM
2+nyM

2+nzM
2)/3N2 (J7) 

In Eq. (J7), fQBML introduces the quantum-box maximum kinetic energy reduction factor in the low 

energy limit, and nxM
2, nyM

2, and nzM
2 correspond to the values of the fermion with the highest 
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energy within the ground state energy of the big box. (We fill all of the lowest energy states of the 

big box to find the ground state. The maximum kinetic energy of those lowest energy states is what 

we call the max kinetic energy.)  

The expressions in Eqs. (J6) and (J7) are extremely simple to evaluate numerically, and some 

results from QuantumStates1 are shown in Table J1. It is readily apparent from Table J1 that 

putting all of the fermions in one big box results in a lower energy than if we confine them into 

individual small boxes within the same volume, and that the maximum energy of a fermion in the 

big box is less than that of the individually confined fermions. 

Table J1 – Results of Numerical Evaluations of Various Large Box Sizes for Low Energies 

N N3 
Total Kinetic Energy/ Ground 

State Individual Cell Kinetic 
Energy, fQBTL 

Max Kinetic Energy / Ground State 
Individual Cell Kinetic Energy, 

fQBML 
1 1 1.0 1.0 
2 8 0.7292 0.9167 

10 1000  0.3575  0.5767 
50 125000 0.3173 0.5256 

250 15625000 0.3097 0.5156 
 
When the kinetic energy is no longer small compared to the rest mass energy, additional 

complexity is involved. In that more general case the kinetic energy ratio is  

fQBT =  (J8) 

XYZ {[(nx
2+ny

2+nz
2)h2c22/(NC)2+m2c4]1/2 – mc2}/N3{[3h2c22/C

2+m2c4]1/2 – mc2} 

In Eq. (J8) fQBT is the quantum-box total kinetic energy reduction factor in the general case. 

Continuing with the general case, the maximum ground state kinetic energy ratio is 

fQBM = {[(nxM
2+nyM

2+nzM
2)h2c22/(NC)2+m2c4]1/2 – mc2}/{[3h2c22/C

2 + m2c4]1/2 – mc2}  (J9) 

In Eq. (J9) fQBM is the quantum-box maximum kinetic energy reduction factor in the general case. 

The more general Eqs. (J8) and (J9) are still straightforward to evaluate numerically, although they 



 

230 
 

are a bit more complex and they involve variable inputs for the cell size C and for the rest mass 

of the species being considered. The numerical evaluation is done by code QuantumStates2. 

J.3. Defining A Representative Quantum Analytical Cell.  As stated above in section J.1, our 

aim is to achieve a model that builds up from a cubic box containing two fermionic particles, and 

yet as just described there will be a large number of different quantum number sets for the fermions 

within dense stellar objects. Therefore to achieve our goal we will define a representative quantum 

analytical cell to contain one pair of fermions. We will assume that the size of our cell will be C 

in all three dimensions, and that the size of an arbitrarily larger box will have a size of NC in all 

three dimensions. (The larger box will contain N3 cells. The larger box will have its size determined 

by the quantum collapse caused by thermal collisions and it is one of many physical cubes making 

up the star. The smaller box is our representative cube containing just two fermions that we use 

for our numerical integrations.) We will define a representative quantum analytical cell such that 

the quantum-pressure at the walls of the representative cell is the same as the quantum-pressure 

on the walls of the larger box. 

Our analysis-cubes will have an outward force resulting from the quantum-pressure. To find the 

pressure we form the quantity dEnSO/d, where d is a virtual increase of the cube dimensions 

during a virtual expansion of the cube. Recalling Eq. (J4), EnSO = [(nx
2+ny

2+nz
2)h2c22/2 + m2c4]1/2 

we now calculate dEnSO/d 

dEnSO/d = –[(nx
2+ny

2+nz
2)h2c22/2 + m2c4]-1/2[(nx

2+ny
2+nz

2)h2c22/3]  (J10) 

Eq. (J10) expresses the change of energy of the entire cube divided by a small change in .  

To further clarify, consider the ground state energy of a cube when it is expanded by d. In that 

case EnSO(+d) = [3h2c22/(+d)2 + m2c4]1/2 ~= [3h2c22/(2+2d) + m2c4]1/2 = 

[3h2c22/2(1+2d/) + m2c4]1/2 ~= [(1–2d/)3h2c22/2 + m2c4]1/2 = [3h2c22/2 + m2c4 – 
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2(d/)3h2c22/2]1/2 = [3h2c22/2 + m2c4]1/2[1 – {2(d/)3h2c22/2}/{3h2c22/2 + m2c4}]1/2 ~= 

[3h2c22/2 + m2c4]1/2[1 – {(d/)3h2c22/2}/{3h2c22/2 + m2c4}]. And so we find that dEnSO = 

EnSO(+d) – EnSO() = –(d/)3h2c22/2}/{3h2c22/2 + m2c4}1/2 = –d[3h2c22/3]/[3h2c22/2 + 

m2c4]1/2, which, when rearranged, is the same as Eq. (J10) for the ground state. 

As described near Eqs. (4) and (5), the magnitude of the force on each face of the cube will be 

FFACE = (1/3)dEnSO/d 

FFACE = [(nx
2+ny

2+nz
2)h2c22/33] / [(nx

2+ny
2+nz

2)h2c22/2 + m2c4]1/2 (J11) 

(Note that for the ground state, where nx
2+ny

2+nz
2 = 3, in the limit 3h2c22/2 << m2c4 Eq. (J11) 

becomes FFACE = h22/3m. This agrees with Eq. (5), FQ = dEQ/dXQ = 2KQ0/Q
3, if KQ0 = 

h22/2m. It also agrees with the KQ0 we calculated in the parenthetic note following Eq. (J4) in 

the case of a single dimension. The force specified in Eq. (5), like that in Eq. (J11), is the force on 

a single face.)  

Since the pressure is the force divided by the area, the pressure on a single face is the force of Eq. 

(J11) divided by the area of a single face. And with the single face area equal to 2, we obtain 

PQS = [(nx
2+ny

2+nz
2)h2c22/35] / [(nx

2+ny
2+nz

2)h2c22/2 + m2c4]1/2  (J12) 

The subscript S in Eq. (J12) reminds us we are so far dealing with a single particle in a box. We 

must now include both of the two fermions in our analytical cell. The second fermion will 

contribute an amount of pressure equal to that of the first, leaving the pressure on the walls of our 

analytical cell as  

PQ = 2[(nx
2+ny

2+nz
2)h2c22/35] / [(nx

2+ny
2+nz

2)h2c22/2 + m2c4]1/2 (J13) 

Recalling Eq. (J4), EnSO = [(nx
2+ny

2+nz
2)h2c22/2 + m2c4]1/2, Eq. (J13) becomes PQ = 

2[(nx
2+ny

2+nz
2)h2c22/35]/EnSO, which leads to 

 = [2(nx
2+ny

2+nz
2)h2c22 / 3PQEnSO]1/5 (J14) 
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The pressure inside an arbitrary large cube with edge lengths of NC is obtained by summing the 

individual pressures given by Eq. (J13) over all of the quantum states within that cube: 

PQNC = XYZ 2[(nx
2+ny

2+nz
2)h2c22/3(NC)5] / [(nx

2+ny
2+nz

2)h2c22/(NC)2 + m2c4]1/2 (J15) 

Evaluation of Eq. (J15) is done by a computational routine running through all values of nx, ny, 

and nz between 1 and less than 1.8N and then selecting the lowest N3 pressures and summing them. 

We will now define the representative cube as having all three edge lengths equal to C while also 

achieving the same pressure as that obtained from Eq. (J15). We do this by setting a factor f in the 

following expression: 

PQNC = PREP = 2fh2c22/3C
5 / [fh2c22/C

2 + m2c4]1/2 ~= 2fh2c22/3mc2C
5 (J16) 

In Eq. (J16) PREP is the pressure of the representative cube and we replace (nx
2+ny

2+nz
2) by f and 

the final expression results because our representative cube will typically have fh2c22/C
2 << m2c4 

for cases of interest. Solving (J16) for f 

f = PQNC/(2h2c22/3mc2C
5) = 3PQNCmc2C

5/2h2c22  (J17) 

For our representative cube we obtain an expression for C by rearranging Eq. (J17): 

C = [2fh2c22 / 3mc2PQNC]1/5 (J18) 

f is an effective quantum number that gives a pressure with the same form as that given in Eq. 

(J13) while also giving the same value as the pressure from Eq. (J15). We will use f later in 

numerical integrations. Since f changes rather slowly during our integrations it allows us to speed 

up those integrations rather than evaluating Eq. (J15) at every step during the process. And notice 

that as long as f is changing slowly we can still use Eq. (J16) even when fh2c22/C
2 << m2c4 is no 

longer valid. This is because we are only using Eq. (J16) to get an expression for f which we use 

to avoid calls to a slow subroutine. (As long as f is varying slowly, when we call the subroutine 

later no significant error will have occurred in our calculation.) 
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J.4. White Dwarf Maximum Density. To analyze what happens within a white dwarf we will 

begin with a quantum cell containing two electrons, and add to it two protons and two neutrons. 

We will make the simplifying assumption that the white dwarf is comprised of carbon. (We could 

use any element, as our goal is just to find the mass of a two-electron, two-proton and two-neutron 

cell; carbon is our arbitrary choice.) A single carbon atom has a mass of 1.99x10-26 kg and the 

density of un-pressurized graphite is 2.26x103 kg/m3. The volume of a single carbon atom in the 

graphite state is thus 1.99x10-26 kg/2.26x103 kg/m3 = 8.805x10-30 m3. For a cubic cell of material 

containing two electrons, two protons and two neutrons each edge of the cell will consist of 1/3rd 

of an atom, leading to an unpressurized length of 

C = (8.8x10-30 m3/3)1/3 = 1.432x10-10 m.  (J19) 

We will now calculate how much our cell needs to be crushed before it becomes energetically 

favorable for it to collapse into a pure neutron state. When the kinetic energy of the quantum state 

exceeds the rest-mass energy difference between that of one neutron (939.56 MeV) and that of a 

proton plus an electron (938.27 MeV+0.51 MeV), the proton and electron will collapse into a 

neutron. This occurs at the energy of  

ECOLLAPSE = [939.56 MeV – (938.27 MeV+0.51 MeV)] = 0.78 MeV (J20) 

We now recall Eq. (J4), EnS = [(nx
2+ny

2+nz
2)h2c22/2 + m2c4]1/2. The ground state (nx = ny = nz = 

1) kinetic energy of our cell of size  is thus ECG = [3h2c22/2 + m2c4]1/2 – mc2, where the subscripts 

are C for our cell and G for the ground state. We know from section J.2 that the maximum energy 

within a larger cube with edges equal to N will be reduced from ECG by a factor of fQBM, and it is 

this largest energy electron that will have the most energy, leading to the collapse. Therefore we 

will need an energy of ECG = ECOLLAPSE/fQBM to collapse our cell.  So we set ECOLLAPSE/fQBM = 0.78 
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MeV/fQBM = ECG = [3h2c22/2 + m2c4]1/2 – mc2, or [3h2c22/2 + m2c4] = (0.78 MeV/fQBM + mc2)2, 

or 3h2c22/2 = (0.78 MeV/fQBM + mc2)2 – m2c4, or  

COLLAPSE = {3h2c22/[(0.78 MeV/fQBM + mc2)2 – m2c4]}1/2 (J21) 

An issue with evaluating Eq. (J21) is that fQBM is numerically determined from QuantumStates2 

(see the end of section J.2 above) with C as one if the inputs to the numerical calculation. 

Fortunately we can guess a value of COLLAPSE, check for consistency, and then update and iterate 

until we obtain a COLLAPSE that agrees with Eq. (J21). We then find COLLAPSE = 6.455x10-13 m 

which leads to fQBM = 0.65. (QuantumStates2 is run with N = 50,  = 6.455x10-13 m and m = 

9.11x10-31 kg.) With this we can now calculate the maximum white dwarf density  

WD0 = 1.99x10-26 kg /3(6.455x10-13 m)3 = 2.466x1010 kg/m3  (J22) 

(In Eq. (J22) WD0 is an estimated maximum density obtained under several assumptions and 

omissions. We will return to this issue later in section J.7 below.) 

J.5. Hydrostatic Equilibrium in a White Dwarf. To determine the density profile within white 

dwarf stars we will need to equate the force of the outward pressure differential to the inward 

gravitational force on an analytical-cube. Consider a cube with two of its faces perpendicular to r, 

where r is the vector from the star’s center to the center of our analytical cube. The mass of the 

cube is Adr where  is the mass density inside of the cube, A = dr2 is the area of the cube on a 

face perpendicular to r, and dr is the thickness of the cube in the r direction. The gravitational force 

will be the mass of the cube, Adr, times the mass of the star inside of r, MIN, times the gravitational 

constant divided by the distance squared, G/r2. (For a spherically symmetric stellar mass, the 

attraction of a small mass to the star’s center only depends on the stellar mass inside of the radial 

position r of the small mass because the net force from regions greater than r is zero.) The 

gravitational force will be directed inward. The pressure on the face nearest to the star’s center can 
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be defined as P, and the pressure on the face farthest from the star’s center will be defined as P – 

dP. The force on any cube face due to pressure is the pressure times the area, so the total force on 

the cube from the pressure will be PA on the inner face minus (P–dP)A on the outer face, with a 

net force of dPA, directed outward. Equating the inward gravitational force to the outward pressure 

force, dPA = GMINAdr/r2, or  

dP = GMINdr/r2. (J23) 

Eq. (J23) is the condition of hydrostatic equilibrium. 

J.6. SDO1: A Computer Code to Evaluate Hydrostatic Equilibrium in a White Dwarf. Below 

we will make use of our representative analytical cube cell density: 

WD = MCELL/C
3  (J24) 

As mentioned in the section J.4 above, we consider a single cell that is 1/3rd of a Carbon atom, so  

MCELL = 1.99x10-26 kg/3 = 6.63x10-27 kg (J25) 

We can now write a simple numerical integration code SDO1 (for Super Dense Objects) to 

determine the mass and radius of a white dwarf. The code will also find the star density at each 

radius, once we set its central density. 

First we need to write a method that solves for f as given in Eq. (J17). (See section J.3 above. Eqs. 

(J4) and (J15) are also used.) Next we set up the initial conditions at the central location of the star, 

by assuming a small starting sphere. We set: r = dr (we start with a small sphere of radius dr); WD 

= WD0 (we set the density of the white dwarf to some input density WD0); MIN = WD*(4/3)r3 

(MIN is the mass inside of r); C = (MCELL/WD)1/3 (see Eqs. (J24) and (J25); MCELL is an input to 

the program; C is the edge length of our representative analytical cube); then we call the method 

to get f (since the method uses C for the calculation of f we find C first); and then we get the 

pressure on the cell PREP = 2fh2c22/3mc2C
5 from Eq. (J16).  
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Then we integrate through subsequent spherical shells. Within a loop we iteratively set: P = P – 

GMINdr/(r+dr/2)2 (we subtract the pressure difference specified in Eq. (J23), using the center of 

the spherical shell r+dr/2 in the denominator); C = [2fh2c22 / 3mc2PWD]1/5 from Eq. (J18); 

WD=MCELL/C
3 (Eq. (J24) is used to find the density); MIN = MIN + WD(4/3)[(r+dr)3–r3] (the 

mass inside the new value of r is what it was before plus the mass of this shell of mass); and r = r 

+ dr (we prepare to step into the next shell of thickness dr). We update f whenever we’ve been 

through the loop COUNT times since the last update (COUNT is an input value to the program). 

We terminate the program when C is greater than one angstrom or when the pressure drops to 

zero.  

J.7. Results and Accuracy of Computer Code SDO1. The computer code SDO1 was written to 

perform the numerical integrations identified in section J.6. Inputs to the code are: 1) WD0, the 

assumed central density of the stellar object; 2) MCELL, the mass of the representative cell; 3) MDF, 

the rest mass of the fermion providing the degenerate pressure; 4) DR, the radial step size for the 

integration; 5) COUNT, the number of times iterations are done before updating f; 6) N, the ratio 

of the big box edge length to the representative cell edge length; and 7) FEA, an empirical 

adjustment factor. (FEA will be discussed below.) 

For the white dwarf analysis, MCELL is 1/3rd of a carbon atom, 6.63x10-27 kg. In the case of a white 

dwarf, electrons provide the degenerate pressure, and hence MDF = 9.11x10-31 kg. The remainder 

of the inputs were varied depending on what was being investigated. 

The first set of runs of the code were done with an initial density corresponding to what we found 

in Eq. (J22), WD0 = 2.466x1010 kg/m3. Within that set of runs we set FEA = 1.0 and the remaining 

parameters were varied to inspect convergence of the numerical integration. Table J2 presents 

some results. 
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Table J2 Results of SDO1 for White Dwarves, WD0 = 2.466x1010 kg/m3 
ROW DR COUNT N Radius (m) Mass (Ms) 

1 25 1000 50 5962225 1.010 
2 25 100 50 5970175 1.013 
3 5 1000 50 5969425 1.012 
4 25 1000 250 5899175 0.9849 
5 25 1000 10 6279550 1.143 

 
Row 1 in Table J2 is our representative run. Row 2 shows that making a more frequent call to find 

f (from every 1000 iterations to every 100) doesn’t affect the outcome of the program much. Row 

3 shows that slicing the star into 5-meter-thick spherical shells doesn’t change the outcome much 

as compared to using 25-meter-thick spherical shells. And row 4 shows that confining the electrons 

to a box with edges 250 times that of the representative cell leads to a 2% reduction in mass as 

compared to a box with edges 50 times that of the representative cell. Lastly, Row 5 shows that 

confining the electrons to a box with edges 10 times that of the representative cell leads to a 13% 

increase in mass as compared to a box with edges 50 times that of the representative cell. 

We needn’t be very concerned about the change in our output due to changes in N, as that is to be 

expected. The smaller the bounding box for our particles-in-a-box, the higher their energy states 

will be. This is a feature of the present modeling. So everything seems to be quite stable from a 

convergence point of view. 

However there is one aspect of concern in Table J2, and that is the predicted masses of the White 

Dwarfs, which are about 1.0 Ms. (Here in Appendix J, Ms is the mass of the sun.) Recall that Table 

J2 is using an initial density parameter that should be the threshold value for collapse into a neutron 

star, and this should be as large as White Dwarfs can get. Yet observations show what are believed 

to be White Dwarfs with masses up to 1.33 Ms, and the Chandrasekhar limit is roughly 1.4 Ms. 

In order to address the possibility of larger mass White Dwarfs, we now reflect on the simplicity 

of our model and what we are leaving out. There are several factors that could lead to a larger 
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mass. Thermal pressure and centrifugal forces will both add outward pressure. The coulomb 

attraction between electrons and protons will provide an additional potential energy we did not 

include when we calculated the density at which it becomes energetically favorable for collapse 

into neutrons. For our purposes we will now lump all of these effects into a single empirical 

adjustment factor FEA, and we will apply that factor to the outward quantum pressure calculated in 

our program by setting f = FEA*f within SDO1.  

While a more detailed estimation of the effects that go into FEA is of interest, as long as FEA does 

not deviate too far from unity, a bulk FEA will be useful for us to keep things simple as we go on 

to investigate the effect of the negative-field-mass in the following sections. Table J3 presents 

results using various factors of FEA while continuing to use an initial density corresponding to what 

we found in Eq. (J22), WD0 = 2.466x1010 kg/m3. For Table J3, we also used the representative 

values of DR = 25, COUNT = 1000 and N = 50. 

Table J3 Results of SDO1 for White Dwarves, WD0 = 2.466x1010 kg/m3, Various FEA’s  
ROW FEA Radius (m) Mass (Ms) 

1 1.0 5962225 1.010 
2 1.07 6167675 1.118 
3 1.15 6394425 1.246 
4 1.20 6532150 1.328 
5 1.25 6667025 1.412 

 
As seen in Table J3, an empirical adjustment of 20% will lead to a mass that is as about as large 

as any observed white dwarf. Therefore the quantum (degenerate) pressure and gravity are the 

dominant effects, with other effects being secondary.  

It is of interest to evaluate the contributors to FEA, which we’ve identified as thermal pressure, 

rotational effects and Coulomb forces. Eq. (J20) informs us that ECOLLAPSE = 780 keV. As an initial 

comment, the rotational energy of the atoms in the center of the star are negligible. A central 

temperature of 100,000 degrees Kelvin results in a thermal energy of around 8.6 eV, which is also 
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negligible in comparison to ECOLLAPSE. This leaves us with the Coulomb effects, and the Coulomb 

force scales as Q1Q2/r2, so the potential energy scales as Q1Q2/r, where Q1 is the charge on an 

electron and Q2 is the charge on an ion. Hydrogen has a radius of about 5x10-11 m, and with C = 

6.455x10-13 m, we see that our expected compaction of the radius will increase Coulomb energies 

by about a factor of 100. Hydrogenic atoms have ground state energies proportional to Q2
2, and 

hydrogen has a ground state energy of 13.6 eV. (Here, Q2 is the atomic number of the nucleus.) 

Heavier material will fall toward the core of the star, and the star’s core may be made of iron with 

Q2 = 26. Squeezing the radius down by a factor of 100 and multiplying that by 262 leads to an 

energy of (13.6 eV)(100) 262 = 919 keV for a squeezed single electron orbiting an iron nucleus. 

The other electrons of the iron atom will screen the iron nucleus charge, significantly reducing this 

energy, and hence we see that qualitatively an FEA of 1.2 is plausible. While the empirically 

determined FEA of 1.2 is entirely sufficient for our future purposes, our qualitative analysis also 

leads to certain conclusions: 1) Coulomb effects dominate FEA; 2) an FEA of 1 should be applied to 

neutron stars where there are no Coulomb effects; and 3) the inner core composition of white 

dwarfs is a critical factor when determining when they will become a supernova. 

A final check of our initial model is to calculate how the size and mass of white dwarfs scale with 

each other. Table J4 shows the results of SDO1 for various central densities. For all of the 

calculations, we use the values of DR = 25, COUNT = 1000, N = 50 and FEA = 1.2. For the 

prevalent mass region of 0.6Ms to 0.8Ms we see that the quantity Radius*Mass1/3 is approximately 

constant, and even the result at 0.42 Ms is not too far off from that scaling law. For the case near 

the point of collapse at 1.328 Ms deviation from the scaling value Radius*Mass1/3 appears. 
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Table J4 Results of SDO1 for White Dwarves, Various Values of WD0 
ROW WD0 (kg/m3) Radius (m) Mass (Ms) Radius*Mass1/3 

1 2.466x1010 6532150 1.328 7,179,962 
2 3x109 9955300 0.8052 9,261,662 
3 2x109 10740000 0.7063 9,564,612 
4 1.25x109 11707050 0.5987 9,866,972 
5 5x108 13787350 0.4184 10,312,042 

 
As can be seen, our simple particles-in-a-box model gets us a quite good agreement with present 

understanding of white dwarfs. While we have introduced an empirical adjustment factor to assist 

with the agreement, that adjustment is only a 20% increase in the prevailing pressures, and as 

mentioned above such an increase is plausible due to effects we have neglected from our simple 

approach. And lastly, it is also to be admitted that the present understanding itself may not be fully 

accurate. We cannot do controlled experiments with white dwarfs – we can only observe them 

from very far away. And of course, our understanding of our observations is further guided by 

prevailing theory, which itself may be lacking. So at this point we are very satisfied that our 

particles-in-a-box modeling serves our purposes and we can now turn to an analysis of the effects 

of field-mass on the super dense objects found in our universe. 

J.8. Two Hypotheses for the Effect of Negative-Field-Mass on Hydrostatic Equilibrium. In 

deriving the equation for hydrostatic equilibrium above in section J.5 we make use of the 

gravitational attraction on a small cube of mass Adr to the center of the star; this leads to a force 

of GMINAdr/r2 where MIN is the mass of the star within a radius of r. When including the effects 

of the negative-field-mass it is obvious that the attraction will now involve only the MNET inside 

of r, where MNET = MPOS – MNEG and where MPOS is the positive mass of things like hadronic and 

leptonic matter and MNEG is the negative-field-mass. (This is obvious since it is consistent with 

our evaluation of the advance of the perihelions.) However it is not clear whether we should 

include the negative mass inside the small volume Adr in the gravitational attraction equation. 
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Perhaps the gravitational attraction involved in hydrostatic equilibrium is determined by the 

positive mass only, since only the positive mass (such as that of electrons, protons and neutrons) 

involves particles that are free to move about and collide with each other, and our ideas of pressure 

involve such matter. Or, perhaps the gravitational attraction involved in hydrostatic equilibrium 

involves the total mass inside the small volume Adr and in that case the negative field-mass will 

also participate. This leads us to two hypotheses to consider: 

dP = GMINPOSdr/r2  (hypothesis one, exclusion of negative-field-mass within Adr) (J26) 

dP = GMINNETdr/r2  (hypothesis two, inclusion of negative-field-mass within Adr) (J27) 

Since it is not obvious which equation to use, in what follows we will consider both hypotheses. 

Resolution of which one manifests itself in nature will be determined empirically. 

J.9. Effects of the Negative-Field-Mass on White Dwarves, Codes SDO2 and SDO3. Using the 

crude approximation given in section E.2 above, we’ll evaluate MEFF for the densest white dwarf 

star listed in table J4, with a radius of RWD = 6.532x106 m and a mass of MWD = 1.328 MS ≈ 

2.641x1030 kg. We get MWDEFF = MWD – 3KG5MWDRWD – 6KG6MWD
2/RWD = MWD – (3x10-21 m-1 

x6.532x106 m)MWD – [(6x9x10-28 m/kgx2.641x1030 kg)/6.532x106 m]MWD = MWD–(1.960x10-14) 

MWD – (2.183x10-3)MWD,  

MWDEFF ≈ MWD – (2.183x10-3)MWD = 0.9978MWD (J28) 

We see from Eq. (J28) that our crude approximation indicates that the field-mass effects are small, 

even on the densest white dwarf. Nonetheless, we would like to do a more accurate calculation of 

the negative-field-mass, as we will need such a calculation for heavier and denser stellar objects 

later. 
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The effect of the first-field-mass is negligible. (We have just calculated it to be 1.960x10-14 MWD 

in the crude limit of a uniform sphere of mass. A finer calculation is unnecessary as we already 

know it is negligibly small.) For the second-field-mass, the mass density is given in Eq. (263): 

M2 = –4Kc
2KT0|PG|2/X00

2c2 = –KG4PG
2 (263) 

Also important is Eq. (249), which for r > R informs us that PGLOUT = (3[KG1–KG2]MMc2/16r2)r̂. 

And we must include our knowledge that PGL will be determined by the mass within r for a 

spherically symmetric mass distribution. (Any spherically symmetric mass distribution outside of 

r will have its gravitational force effect cancelled.)  

The total second-field-mass M2OUT within a spherical shell of outer radius r+dr and inner radius 

r can now be found by integrating M2 within that shell, M2SHELL = 4∫ M2 r2dr = –4∫ 

KG4(3[KG1–KG2]MMNETc2/16r2)2r2dr = 4KG4(3[KG1–KG2]MMNETc2/16)2/r = 5KG6(MMNET)2/r 

evaluated between r and r+dr. Here, we’ve recalled Eq. (270), KG6 = (4KG4/5)(3[KG1–

KG2]c2/16)2. With M = 1, the mass of the shell will be 5KG6MNET
2/(r+dr) – 5KG6MNET

2/r = 

5KG6MNET
2/r(1+dr/r) – 5KG6MNET

2/r ~= (5KG6MNET
2/r)(1–dr/r) – 5KG6MNET

2/r = – 

(5KG6MNET
2/r)(dr/r) = – 5KG6MNET

2dr/r2, 

M2SHELL = 4∫ M2 r2dr = – 5KG6MNET
2dr/r2 (J29) 

In Eq. (J29) we use MNET instead of M because the second-field-mass provides a negative mass, 

and the displacement PGLOUT will be sourced by the net mass MNET = MPOS – M2. 

We can now update our SDO1 program to new programs SDO2 and SDO3 that include the effects 

from the second-field-mass. As we integrate from the center of the dense stellar object outward we 

will numerically integrate both the positive mass as well as the negative mass (the second-field-
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mass). The net mass is the positive mass minus the magnitude of the negative mass, MNET = MPOS 

– 5KG6MNET
2dr/r2. 

For the new programs we’ll start with a calculation of a central sphere of positive mass (MPOS) just 

as we did for program SDO1. We then set the net mass inside the sphere (MIN) equal to the positive 

mass, since PGLOUT is zero at the sphere center, and we set the remaining quantities just as we did 

in SDO1 as described in section J.6. Then we integrate through subsequent spherical shells. We 

find the shell volume, shellVolume = (4/3)[(r+dr)3 – r3]. For SDO2 we define  = POS and set P 

= P – GMINPOSdr/(r+dr/2)2 subtracting the pressure difference specified in Eq. (J26) and using the 

center of the spherical shell r+dr/2 in the denominator. For SDO3 we set P = P – 

GMINNETdr/(r+dr/2)2 using Eq. (J27) instead of Eq. (J26). Next, C = [2fh2c22 / 3mc2PREP]1/5 from 

Eq. (J18). Note that Eq. (J18) is not dependent upon the density of the negative mass, as it results 

from the quantum pressure which is a function of the density of the fermions and their rest masses; 

the negative-field-mass plays no role. We set POS=MCELL/C
3 from Eq. (J24) to find the density, 

and here we are determining the positive mass density and MCELL is the positive mass of the cell 

only. Next we set MPOS = MPOS + shellVolume x POS. MNEG, the absolute value of the negative 

mass, is determined through Eq. (J29), MNEG = MNEG + 5KG6MNET
2dr/(r+dr/2)2. The net mass is 

MNET = MPOS – MNEG. And NET = POS – {5KG6MNET
2dr/(r+dr)2shellVolume} where the second 

term is the negative mass in the shell divided by the volume of the shell, which is of course the 

negative mass density. Finally, we update r to r = r + dr (we prepare to step into the next shell of 

thickness dr in the next iteration). The codes again terminate when C is greater than one angstrom 

or when the pressure drops to zero. (The one angstrom value is passed in to the program.) 

Table J5 presents a comparison between the code SDO1 which does not include the effects of the 

negative-field-mass and codes SDO2 and SDO3 which include the effects of the negative-field-
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mass. The codes were run with the representative values of DR = 25, COUNT = 1000, N = 50 and 

FEA = 1.2. 

Table J5 Results of SDO1 vs SDO2 vs SDO3 for White Dwarves, WD0 = 2.466x1010    

Code Radius (m) Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

SDO1 6532150 1.328 N/A N/A 
SDO2 6536950 1.330 0.002 1.327 
SDO3 24746300 1.335 0.004 1.331 

In table J5, the results show that the magnitude of the mass difference between the codes is 

consistent with what is calculated in Eq. (J28), as the net mass calculated in codes SDO2 and 

SDO3 (which include the effects of the negative-field-mass) are of the order 10-3 different than the 

mass calculated in code SDO1 (which excludes the effects of the negative-field-mass). However 

it may seem odd that the calculation of positive mass increases as we go from SDO1 to SDO2 and 

SDO3, since we are including a negative mass in SDO2 and SDO3. The reason for the mass 

increase is because the change in pressure is less as we move outward from the center for SDO2, 

and this leads to a smaller increase in the cell size, leaving a denser star and it also takes longer to 

reach the termination of the program, leading to a slightly larger radius for the case of SDO2. For 

the case of SDO3 we have a significantly larger radius but not much larger mass. The radius 

calculated in SDO3 is much larger than that calculated in SDO2 because the use of NET in the 

hydrostatic equilibrium leads to a much smaller fall-off of pressure in the outer regions, which in 

turn reduces the decrease in C in those outer regions, taking it significantly longer to reach the 

one angstrom point of code termination. Since the density in the outer regions is so much smaller 

than that of its core, the net and positive masses calculated by SDO3 differ little from SDO2, 

despite the large difference in radius. 

J.10. State Changes and Radius Definitions in White Dwarfs. When dealing with dense objects 

there can be various state changes as the pressure drops from the center of the body outward. The 
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situation is familiar to us on earth, where there are state changes between the core, the mantle, the 

solids that make up the earth’s crust, and the atmosphere above it. Eventually, as we move far 

enough outward, the density of the gas is so small that we can consider it to be part of the solar 

system medium and not part of the earth. Finding what we call “the radius” of heavenly objects 

thus involves some definition of what we mean. One useful definition may be that radius where 

some relevant state change occurs. In that definition, the radius of the earth can be defined as the 

radius within which atoms are closely packed into solids or liquids. On earth, the total mass of the 

atmosphere is a very small fraction of the mass of the solid and liquid matter. 

For white dwarfs there is an additional state change, as the majority of the white dwarf is in an 

electron-degenerate state, while regions far from the center can become what we consider normal 

(although compressed) solids and liquids, and further out there can be an atmosphere. Here, we’ve 

made an arbitrary definition of the electron-degenerate matter surface to be the point where our 

representative cell size C grows to one angstrom in all three dimensions. To explore the 

ramifications of different termination sizes, calculations were done using SDO2 and SDO3 with 

termination points of 10-10 m, 1.432x10-10 m (the value for graphite on earth), and 10-11 m. The 

results of these calculations are shown in Tables J6 and J7.  The codes were run with the 

representative values of WD0 = 2.466x1010, DR = 25, COUNT = 1000, N = 50 and FEA = 1.2. 

Table J6 Results of SDO2 for White Dwarves for Various Termination Conditions 

Code  Termination 
(Angstroms) 

Radius (m) Positive Mass 
(Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

SDO2 1.0 6536950 1.329692 0.002219 1.327472 
SDO2 1.432 6537350 1.329692 0.002220 1.327472 
SDO2 0.1 6455525 1.329634 0.002189 1.327445 

 
Table J6 shows that different choices of program termination do not significantly affect the mass 

and radius calculations for any of the conditions evaluated by SDO2. This is because SDO2 uses 
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the positive mass density of Eq. (J26) in the pressure drop which results in a rapid convergence 

toward a vacuum pressure. 

Table J7 Results of SDO3 for White Dwarves for Various Termination Conditions 

Code  Termination 
(Angstroms) 

Radius (m) Positive Mass 
(Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

SDO3 1.0 24746300 1.334743 0.003990 1.330752 
SDO3 1.432 32390425 1.334893 0.004140 1.330753 
SDO3 0.1 6494875 1.332895 0.002208 1.330687 

 
Table J7 shows that different choices of program termination do not significantly affect the mass 

calculations evaluated by SDO3. However, the SDO3 radius calculations are rather strongly 

affected by the termination condition. This is not surprising. Since SDO3 uses the net mass density 

of Eq. (J27) in the pressure drop it has a slow convergence to a vacuum pressure. The core of the 

white dwarf has a cell size of  = 6.455x10-13 m while a one angstrom cell has a density close to 

four million times less, and a 0.1 angstrom cell has a density close to four thousand times less. 

Therefore, the total mass in the outer regions of the white dwarf as calculated by SDO3 do not 

contribute significantly to the total mass, but this relatively low-density material can lead to a large 

radius.  

The results shown in tables J6 and J7 show that it is not important what termination point we use 

for the electron-degeneracy region if our aim is to determine the mass of the white dwarf. The 

termination point is however highly relevant for a calculation of the star radius if the hypothesis 

of Eq. (J27) is used. 

The results summarized in Tables J6 and J7 also show that empirical mass observations are 

unlikely to differentiate between the hypotheses put forward as Eqs. (J26) and (J27). Furthermore, 

determination of the radius may prove difficult to observe due to the magnitude of the distance to 

the white dwarf and the relatively small amount of material in its outer regions. We will consider 

both of our hypotheses to remain viable so far. 
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Recall that our primary goal is to show the importance of negative-field-mass to the hydrostatic 

equilibrium of dense objects. Also recall that the thermal, centrifugal force and Coulomb effects 

will all influence our calculations, as already mentioned when we arrived at the empirical 

adjustment factor (FEA) introduced in section J.7. A more thorough modeling of white dwarfs 

would include separate layers of solid, liquid and gaseous atomic matter outside of the electron-

degenerate matter, and such an analysis should also include the effects we’ve simply rolled into 

FEA. However, we will not consider these issues further here. Therefore, use of a one angstrom 

termination condition for the electron-degeneracy layer is acceptable toward our goal and we shall 

use that going forward. 

J.11. A First Look at the Hydrostatics of Neutron Stars. Codes SDO2 and SDO4. In section 

E.2 we evaluated MEFF for a neutron star under overly simplistic assumptions. We used a radius of 

RN = 104 m and a mass of MN = 1.5 MS ≈ 3 x 1030 kg. In that case, MNEFF = MN – 3KG5MNRN – 

6KG6MN
2/RN = MN – (3x10-21 m-1x104 m)MN – [(6x9x10-28 m/kg x3x1030 kg)/104 m]MN = MN – 

(3x10-17)MN – 1.62MN, or 

MNEFF ≈ MN – 1.62MN = –0.62MN (Under Overly Simplistic Assumptions) (395) 

From Eq. (395) we see that the negative-field-mass is likely to be a significant contributor in the 

case of neutron stars. 

We can now use the treatment we’ve developed for white dwarfs and apply it to neutron stars. Our 

computer code SDO2 has been written with the fermion mass, cell mass and termination condition 

being input values, so all we need to do at this point is to run SDO2 with appropriate values for 

these quantities to investigate neutron stars. The fermion mass is now the mass of the neutron, MDF 

= 1.675x10-27 kg, and in this case the cell mass is equal to twice the mass of the neutron, MCELL = 

3.35x10-27 kg. We will now terminate the program when C = 6.455x10-13 m, as that is the point 
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where the neutrons will decay back into protons and electrons. (See discussion above Eq. (J22).) 

We will use a contemporary estimate for the neutron star central mass density, NS0 = 1x1018 kg/m3, 

and we’ll use DR = 1, COUNT = 1000, N = 50, and FEA = 1 as our representative run. We’ll then 

compare that run against runs with parameter modifications to investigate the numerical stability 

of our approach. Results are shown in Table J8. We see that SDO2 has good convergence, as 

changing various inputs leaves the results significantly the same. We also see from Table J8 that 

the negative-field-mass is a significant contributor to the hydrostatics of neutron stars under the 

assumption of the Eq. (J26) hypothesis used in code SDO2. 

Table J8 Results of SDO2 for a Neutron Star, WD0 = 1x1018 kg/m3, FEA = 1 

DR COUNT N Radius (m) Positive Mass 
(Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

1 1000 50 17209 1.3191 0.4414 0.8777 
0.1 1000 50 17253 1.3246 0.4438 0.8808 
1 100 50 17246 1.3246 0.4437 0.8810 
1 1000 200 16965 1.2713 0.4189 0.8524 

 
When moving on to look at the assumption of the Eq. (J27) hypothesis we must now recognize 

that neutron stars may involve two states of matter. As discussed in section J.4, it is energetically 

favorable for a carbon atom to be crushed into a state of pure neutron material once a certain 

pressure is applied. And yet, since pressure drops as distance from the star’s center, we will 

eventually reach a place where the pressure is not sufficient to maintain pure neutron matter. 

Hence, neutron stars may have several different states of matter. The central region will be in a 

neutron degenerate state. At more outward regions there will be an electron-degenerate region, 

then atomic liquids and/or solids, and finally an atmosphere. 

An interesting effect arises in the transition from neutron-degenerate matter to electron-degenerate 

matter in the presence of the negative-field-mass. Since the density of the neutron-degenerate 

matter is considerably greater than that of the electron-degenerate matter, the inner portion of the 
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electron-degenerate region can obtain a negative net mass. This result is allowed because the 

negative-field-mass depends on PG. (Eq. (263) gives M2 = –4Kc
2KT0|PG|2/X00

2c2 = –KG4PG
2.) In 

the highly dense neutron-degenerate material PG can obtain a higher value than what is possible in 

the less dense electron-degenerate material. (PG can typically only grow until the negative-field-

mass approximately equals the positive mass density, as anything beyond that will lead to a 

negative net mass density which will in turn reduce PG. Hence, higher density material will allow 

higher values of PG than lower density materials will.) However, PG is a continuous field (it is the 

positive-aetherial displacement due to gravity.) Therefore, a negative net-mass-density can exist 

in the electron-degenerate region near the boundary of the neutron-degenerate region, since PG can 

be large enough in the nearby neutron-degenerate region to result in a negative-field-mass density 

larger than the positive mass density in the nearby electron-degenerate region. 

When a negative net-mass-density occurs, the electron-degenerate density increases with radius 

within the star: dP is negative due to the negative net mass, increasing the pressure and decreasing 

the cell size. As radial distance increases away from the star center, this increase in density will 

continue until the electron-degenerate positive mass density is large enough that it exceeds the 

(now reduced) negative-field-mass density and the net mass density is again positive. From that 

point on, the electron-degenerate density will decrease with radius. 

If the original expansion in size caused by the neutron decay leads to an electron-degenerate cell 

size that is not large enough, the density increase in the negative net mass region would then cause 

the electron-degenerate mass to collapse back into neutron-degenerate matter. This then provides 

us with the value at which the transition occurs between neutron-degenerate matter and electron-

degenerate matter: the transition occurs when the subsequent compression in the negative net mass 
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region leads to a minimum cell size that is just greater than the electron-degenerate collapse limit 

of C = 6.455x10-13 m. 

A new program was written to evaluate the hydrostatic equilibrium of neutron stars containing 

both neutron-degenerate matter and electron-degenerate matter. SDO4 uses a flag to determine 

whether we use the hypothesis of Eq. (J26) or the hypothesis of Eq. (J27). In the program, the 

calculation begins in the center of the star and the numerical integration proceeds outward, just as 

in SDO2 and SDO3. For SDO4 the representative cell in the central region consists of two 

neutrons, with a corresponding cell mass and rest mass, and FEA is set to 1. A parameter, 

neutronChiLim, is passed into the program. Once the cell size reaches neutronChiLim, the neutron-

degenerate portion of the integration is stopped and an electron-degenerate portion of the 

integration begins. (neutronChiLim is the value of CN at the boundary between the electron-

degenerate and neutron-degenerate matter.) Just before the numerical integration enters the 

electron-degenerate portion of the code, the cell mass is updated to be one third of a Carbon atom, 

the rest mass is updated to that of the electron, and FEA is set to a passed-in value. From there the 

numerical integration is done as it is in the programs SDO2 and SDO3. The minimum size of any 

electron-degenerate representative cell is observed in the program output and the program is then 

run again and again with an updated neutronChiLim input until this minimum size is just large 

enough (C just greater than 6.455x10-13 m) so that the material in the electron-degenerate region 

does not collapse back into pure neutron matter. The electron-degenerate portion of the code 

terminates when the electron-degenerate cell size is one angstrom. A final section of the code 

tracks the net mass in vacuum regions radially outside of the neutron star. Table J9 shows results 

from the code SDO4 under the conditions of central mass density, NS0 = 3.5x1017 kg/m3, DR = 

10, COUNT = 1000, N = 50, FEA = 1.2 and the Eq. (J27) hypothesis. The boundary between the 
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neutron-degenerate region and the electron-degenerate region (neutronChiLim) was set to 

4.044x10-13 m. 

Table J9 Results of SDO4 for a Neutron Star, WD0 = 3.5x1017 kg/m3, Eq. (J27) Hypothesis 

Evaluation Point Radius (m) Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Neutron-Degeneracy/Electron-
Degeneracy boundary 

372020 1.3065 0.4754 0.8311 

Electron-Degeneracy/Free 
Space Boundary 

19,662,810 1.3317 0.4917 0.8400 

10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
196,628,100 1.3317 0.4920 0.8397 

 
Table J10 shows results from the code SDO4 under the conditions of central mass density, NS0 = 

1x1018 kg/m3, DR = 1, COUNT = 1000, N = 50, FEA = 1.2 and the Eq. (J26) hypothesis. The 

boundary between the neutron-degenerate region and the electron-degenerate region was again set 

to 4.044x10-13 m. However, in SDO4 no calculation is done in the electron-degenerate region in 

this case; rather, the calculation goes from the neutron degenerate region directly into the free 

space region since the cell size expansion is calculated to be extremely rapid toward the star 

surface. 

Table J10 Results of SDO4 for a Neutron Star, WD0 = 1x1018 kg/m3, Eq. (J26) Hypothesis 

Evaluation Point Radius (m) Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Neutron-Degeneracy/Free 
Space Boundary 

17209 1.3191 0.4414 0.8777 

~10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
173,811 1.3191 0.6980 0.6211 

 
Tables J9 and J10 show that the hypothesis given by Eq. (J26) is preferred. This judgement is 

based on the prevailing theory of pulsars coupled with the observation of millisecond pulsars. For 

the neutron star results of Table J10, the surface of the pulsar would be rotating at 2x1.72x107 

m/s = 1.081x108 m/s for a rotation period of 1 ms. On the other hand, for the neutron star results 
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of Table J9, the surface of the star would need to be moving at substantially greater than the speed 

of light. Even the neutron-degenerate/electron-degenerate boundary surface would need to be 

moving at substantially greater than the speed of light for the neutron star results of Table J9, and 

this will eliminate the hypothesis of Eq. (J27) from further consideration. 

Notice that the net mass calculated in Table J10 falls from 0.8777 Ms to 0.6211 Ms as we go from 

the star surface to ten times further out into space. This result follows because the high density of 

the neutron star leads to a high value of PG at the star’s surface, with a large negative-field-mass 

density nearly canceling out the large positive mass density there. Just outside of the surface, the 

positive mass density goes quickly to zero, yet due to continuity of PG, the negative-field-mass 

remains large, leaving a negative net mass. This negative net mass reduces PG until eventually the 

fall-off in PG becomes small and the net mass no longer varies significantly. (Recall that there is 

always some fall-off in PG, and indeed that is what leads to the Newtonian gravitational formula 

plus the advance of the perihelions.) By the time we are 10 times further into space than the star 

radius, this drop off has slowed substantially and 0.6211 Ms is a good estimate for the far-field net 

mass (the mass we observe) of the neutron star for the parameters and assumptions used here. 

Neutron stars can come in a variety of masses, and these masses will be determined by their central 

core densities. Table J11 Shows the results of several runs of program SDO4 at different core 

densities. Inputs were DR = 1, COUNT = 1000, N = 50 and the Eq. (J26) hypothesis. Although 

DR = 0.1 was used for the final two rows. 
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Table J11 Results of SDO4 for a Neutron Star, Various WD0 Values, Eq. (J26) Hypothesis 

Evaluation Point WD0 
(kg/m3) 

Radius 
(m) 

Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Neutron-Degeneracy/Free 
Space Boundary 

1x1017 22567 0.3762 0.0363 0.3400 

10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1017 225670 0.3762 0.0729 0.3034 

Neutron-Degeneracy/Free 
Space Boundary 1x1018 17209 1.3191 0.4414 0.8777 

~10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1018 173810 1.3191 0.6980 0.6211 

Neutron-Degeneracy/Free 
Space Boundary 1x1019 16234 5.6251 3.8744 1.7508 

~10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1019 163963 5.6251 4.6975 0.9277 

Neutron-Degeneracy/Free 
Space Boundary 1x1021 19600 99.455 95.285 4.169 

10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1021 196000 99.455 97.962 1.493 

Neutron-Degeneracy/Free 
Space Boundary 1x1024 22300 2274 2268 6.19 

10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1024 223000 2274 2272 1.84 

Neutron-Degeneracy/Free 
Space Boundary 

1x1027 26009 118571 118562 9.20 

~10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1027 262692 118571 118569 2.26 

 

Table J11 is enlightening concerning several aspects of our initial neutron star model. First we see 

the substantial effect that the negative-field-mass has on the eventual observed net mass. (Recall 

that the positive mass is the mass that the material in the star would have if not for the negative 

mass, the negative mass is due to the field-mass, and the net mass is the positive mass minus the 

absolute value of the negative mass.) The positive mass to net mass is 0.34 Ms to 0.3034 Ms for 

WD0 = 1017 kg/m3, and 118571 Ms to 2.26 Ms for WD0 = 1027 kg/m3. For the relatively light 
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neutron star the ratio of the net mass to the positive mass is 89%, but for the heaviest one the net 

mass becomes only 0.002% of the positive mass. This effect comes about because a lot of very 

dense matter will lead to a high value of PG, and a high negative mass density. The negative mass 

density will itself lower PG, and the final result shown by the program is that for very high densities 

the negative mass nearly cancels the positive mass within much of the heavier neutron stars. As 

the central density is increased further, the net mass of the star only increases marginally. 

A second observation concerns large stellar objects such as Sgr A* at the center of the Milky Way. 

Sgr A* has a reported mass of about 4 million Ms. Our model of the aether has no singularity, and 

Table J11 shows that it takes an increase in core density of a factor of 1000 just to increase the net 

mass from 1.84 Ms to 2.26 Ms. Observation of the code output shows that at high density the cell 

size near the center expands rapidly (to a lower density) and hence large changes in the central 

density do not result in much change to the eventual stellar mass. Obtaining a mass of 4 million 

Ms via the physics used in SDO4 will apparently require a truly gargantuan central density. And 

some large objects have reported masses vastly in excess of Sgr A*. The density we use for our 

last row of Table J11 is already about a billion times larger than that found in the smaller neutron 

stars, and yet the mass has only increased to 2.26 Ms. Of course it is entirely plausible that the 

underlying physics may change at extreme conditions, and we will turn to that possibility next. 

J.12. Speculations on the Hydrostatics of Super Massive Objects; Code SDO5. We have just 

seen that program SDO4 does not easily lead to an understanding of super massive objects such 

as Sgr A*. To overcome this issue, we can explore what happens when we change certain 

conditions. Two obvious possibilities present themselves: 1) it is possible that high pressure will 

crush the neutrons into some new form of matter; and 2) the gravitational force relation may change 

in the presence of extreme conditions. The purpose of this section J.12 is to present speculative 
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examples for those two possibilities in a way that is consistent with the foundations of this work. 

Also, here in section J.12 we will assume the correctness of presently prevailing mass estimates 

for certain observed objects, and in section J.13 we’ll comment on the validity of that assumption. 

We’ll allow our section J.12 speculations to evolve all the way to reflections on the origins of the 

universe; but in section J.13 we’ll return to commentary that once again reminds us that we’ve 

only fleshed out a few speculative models out of many that may exist. 

J.12.1. Speculative Example 1; Exotic Particle Formation. First we consider the possibility that 

high pressure will crush the neutron star into some new exotic material. If we use a lower rest mass 

and lower cell mass for the new exotic matter, from Eq. (J24)  = MCELL/C
3, we see that for a 

given central density, our central C will be proportional to MCELL
1/3. By Eq. (J16), PREP ~= 

2fh2c22/3mc2C
5 we see that PREP is proportional to 1/C

5 (neglecting any effect from f) and hence 

our central PREP will be larger for smaller MCELL. The fall-off in pressure is given from the equation 

of hydrostatic equilibrium, Eq. (J23), dP = GMINdr/r2. Now our central  is an assumed starting 

value, and so the pressure drop will be the same while the pressure itself is larger for a smaller 

MCELL. (MIN is a function of , so the central dP will be unchanged.) Since the relative pressure 

drop is smaller, the density will take more distance to fall off. Hence we expect that a lower cell 

mass (from lower mass exotic particles) will lead to a larger stellar mass. The new code SDO5 

extends SD04 to allow us to pass in the exotic particle mass and the cell mass as inputs. SDO5 

does not include an electron-degenerate layer, as we have learned from SDO4 that such a layer is 

so thin as to not be relevant to our analysis. Table J12 presents results of the code SDO5 run with 

different MCELL values. The values chosen are for the neutron as well as exotics that would have 

the mass of the pion, the mass of the electron and one tenth the mass of the electron. These are just 

examples based on familiarity with such masses; exotics are expected to be fermionic hadronic 
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matter and be neither electrons nor pions. For Table J12, NS0 = 1x1021 kg/m3, DR = 1, COUNT = 

1000, N = 50 and FEA = 1. We also set MREST = MCELL/2, as we assume the cell will contain two 

simple exotic particles each of rest mass MREST. (We assume two spin states per cell. We use a 

large value of NS0 because we are presently interested in super massive objects.) To aid in 

convergence, SDO5 increases DR and COUNT as it runs. 

Table J12 Results of SDO5 for a Simple Exotic Particle Star, NS0 = 1x1021 kg/m3, Various 
Fermion mass and MCELL Values, Eq. (J26) Hypothesis 

Evaluation Point MCELL (kg) 
(= 2 mc2) 

Radius (m) Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Neutron-Degeneracy/Free 
Space Boundary 

3.35x10-27 

(Neutron) 
19527 99.452 95.256 4.197 

10 Times Greater than the 
Neutron-Degeneracy/Free 

Space Boundary 

3.35x10-27 

(Neutron) 
195270 99.452 97.906 1.546 

Exotic-Degeneracy/Free 
Space Boundary 

4.82x10-28  1,136,249 312703 312353 350.3 

10 Times Greater than the 
Pion-Degeneracy/Free 

Space Boundary 
4.82x10-28  11,362,490 312703 312602 101.3 

Exotic-Degeneracy/Free 
Space Boundary 

1.82x10-30 8.402x1010 1.535x1015 1.535x1015 2.839x107 

10 Times Greater than the 
Exotic-Degeneracy/Free 

Space Boundary 
1.82x10-30 8.402x1011 1.535x1015 1.535x1015 1.599x107 

Exotic-Degeneracy/Free 
Space Boundary 

1.82x10-31 5.905x1012 1.928x1019 1.928x1019 1.082x1010 

10 Times Greater than the 
Exotic-Degeneracy/Free 

Space Boundary 
1.82x10-31 5.905x1013 1.928x1019 1.928x1019 9.379x109 

 

From Table J12 we see that collapse from a neutron star into one made of simple exotic particles 

can indeed result in super massive stars. It is then of interest to see if a variation in the central 

density results in a wide variety of masses for such objects. Running SDO5 with an input density 

of 1x1017 kg/m3 and assuming a collapse to a simple exotic particle with the mass of the electron 

leads to a predicted net mass of 7.794x106 Ms at a radius of 8.374x1011 m, ten times the star’s 
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radius. As was the case with the neutron star, the final mass is quite insensitive to changes in the 

central density. (A change in central density by a factor of 10,000 results in a change in net mass 

of only a factor of 1.599x107/7.794x106 ~ 2.) Additionally, the radius is considerably larger than 

that of a neutron star. For these reasons, collapse to a simple exotic particle does not appear to be 

a good model for super massive objects, at least for the cases we’ve investigated. It is possible that 

a theory of exotic particles with masses as a function of pressure could map to known super 

massive objects, but such an ad hoc proposal has no other support from existing empirical 

observations and so we will not look into it further. 

J.12.2. Speculative Example 2; Extending Our First-Order Theory. Our second possibility of 

achieving large mass objects is to consider the possibility of altering our first-order derivations in 

section D for regions of high density, pressure, or gravitational fields. Looking back, we find that 

the original founding equations for our understanding of gravity are Eqs. (183) through (186).  

KTP = KT0(1– KG1E) (183) 

KTN = KT0(1– KG2E) (184) 

KQP = KQ0(1– KG2E) (185) 

KQN = KQ0(1– KG1E) (186) 

Eqs. (183) through (186) already inform us that the aetherial quantum constants KT and KQ are 

reduced by the presence of an energy density E. In section D, we have assumed that the reductions 

have the specific linear form as specified by The Extrinsic-Energy Force-Reduction Law. We 

then use Eqs. (183) through (186) to arrive at Eqs. (249), (250), (251) and (263): 

PGLOUT = –NGLOUT = (3[KG1–KG2]MSc2/16r2)r̂ (249) 

FME1ME2 = FGNEWTON = 

–(92M2c2KGC[KG1–KG2]20
21M1c2/16r20)r̂ = –(GN1M12M2/r2)r̂ (250) 
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GN = 9KGC[KG1–KG2]20
2c4/160 = 6.6743x10–11 N m2/kg2 (251) 

M2 = –4Kc
2KT0|PG|2/X00

2c2 = –KG4PG
2 (263) 

Since PGLOUT is proportional to [KG1–KG2], we see that both FGNEWTON and M2 are proportional 

to [KG1–KG2]2. We have seen that the derivations in section D work excellently to calculate 

observed phenomena in the presence of typical (non-extreme) values of E, pressure and 

gravitational field. Yet it is entirely possible that in extreme conditions the expressions for the 

quantum and tension constants will change, and that our founding equations are just the first order 

limits. Specifically, rather than [KG1–KG2]2 being equal to some constant KG12
2, we can 

hypothesize that under extreme conditions [KG1–KG2] changes by some function, g, becoming 

[KG1–KG2] = g x KG12  (J30) 

In Eq. (J30) KG12 is the first order limit used in section D and the function g should converge to 

unity whenever densities, pressures and gravitational fields are not extreme. Such a hypothesis 

leads to modified equations for the gravitational force and negative-field-mass in extreme field, 

pressure or gravitational regions: 

FGNEWTON_EXTREME = –[g2GN1M12M2/r2]r̂ (J31) 

M2SHELL_EXTREME = 4∫ M2 r2dr = – 5g2KG6MNET
2dr/r2  (J32) 

By reviewing the derivation in section D, it can be seen that Eqs. (J31) and (J32) are obtained once 

we accept Eq. (J30) as a new hypothesis in many cases. (Each proposed function g should be 

evaluated to ensure the derivations of section D hold. While sections D.3.2 and D.3.3 call out the 

linearity of G = 3[KG1–KG2]E0/2 from Eq. (193) to arrive at a linear dependence of the quantum 

and tension constants as the cubes move, notice that we can still obtain that linear dependence by 

arranging for e to follow an injection model such that linearity results. The linear portion of the 

quantum and tension constants is derived in section D from the motion of the cubes through the 
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tension and quantum fields, and our injection models are only for heuristic purposes. To derive 

Eq. (192) we use KG1E << 1 and KG2E << 1, and those conditions should continue to hold.) 

With Eq. (J31) now established we can replace Eq. (J23) with 

dPEXT = g2GMINdr/r2 (J33) 

A simple example function g to consider is one that leads to PGLOUT saturating; PGLOUT becomes 

a constant once a certain condition is met. This can be achieved if  

g = 1 for MNET/r2 <= LIM ; g = r2LIM/MNET for MNET/r2 > LIM (J34) 

In Eq. (J34) LIM is some limiting value. Since PGLOUT is proportional to [KG1–KG2], by Eq. (J30) 

we need to add a factor of g into Eq. (249) when determining PGLOUT in extreme conditions. When 

MNET/r2 <= LIM we retain Eq. (249), PGLOUT = (3[KG1–KG2]MNETc2/16r2)r̂, while when 

MNET/r2 > LIM we get PGLOUT = (3[KG1–KG2]LIMc2/16)r̂, showing the saturation. In this case 

of a simple saturation, the derivations of section D remain intact for MNET/r2 <= LIM while for 

MNET/r2 > LIM we simply saturate PGLOUT. 

A starting guess for LIM will be MNET/r2 at the surface of a solar mass neutron star, as we will 

guess that saturation begins to take place in such an environment. From Table J11 we estimate 

LIM0 = 2x1030 kg/(17,000 m)2 = 6.920x1021 kg/m2  (J35) 

We can then use that guess as a starting point and pass an arbitrary multiplier gMULT into SDO5 to 

investigate various values of LIM = gMULT xLIM0. 

Eqs. (J32) through (J35) were encoded into the program SDO5. SDO5 also assumes  = 1. Tables 

J13, J14 and J15 present the results of various runs of SDO5 under different central density and 

gMULT assumptions. All runs assumed that the star consists of pure neutron matter, and the studies 

used the inputs DR = 1, COUNT = 1000, N = 50 and FEA = 1. The tables report the radius of the 

star, with the negative mass and net mass reported at ten times that radius.  



 

260 
 

A notable aspect of our models is the large amount of negative and positive mass associated with 

the dense objects. In Table J13 we find that the observed net mass of a Type 1A supernova remnant 

is only 56% of its positive mass, and Sgr A* has a positive mass about 5x108 greater than the net 

mass that we observe. We see in Table J15 that a change in gMULT (which lowers the maximum PG 

allowed) results in less positive mass, but it is still quite large. The lower gMULT value also increases 

the radii and lowers the central densities of the massive stellar objects. If we postulate that 

millisecond pulsars are fast-spinning remnants of type 1A supernovas, then the radius given in 

Table J15 is already close to a limiting value. Therefore, our speculative model continues to lead 

to the conclusion that there is substantial hidden mass within super massive objects. 

Table J13 Results of SDO5 for Various Initial Densities, gMult = 1 and Neutron Matter Using 
the Eqs. (J32), (J33) and (J34) Hypothesis 

Description NS0 
(kg/m3) 

Radius (m) Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Type 1A SN 
Remnant 

4.1x1017 20877 1.345 0.5901 0.7548 

Neutron Star 5.0x1017 30639 4.765 2.861 1.904 
Neutron Star 8.0x1017 244681 2422 2377 45.92 
Neutron Star 1.0x1018 1.511x106 570,184 569,852 331.8 

Sgr A* 1.62x1018 2.297x109 2.005x1015 2.005x1015 3.807x106 
Andromeda 
Central Star 

1.74x1018 1.220x1010 3.001x1017 3.001x1017 9.076x107 

TON 618 1.96x1018 3.138x1011 5.110x1021 5.110x1021 5.758x1010 
 
 
Table J14 Results of SDO5 for Various Initial Densities, gMult = 0.3 and Neutron Matter 
Using the Eqs. (J32), (J33) and (J34) Hypothesis 

Description NS0 
(kg/m3) 

Radius (m) Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Type 1A SN 
Remnant 

1.05x1017 33757 1.405 0.4199 0.9849 

Sgr A* 3.6x1017 2.778x109 7.823x1014 7.823x1014 4.230x106 
TON 618 4.35x1017 3.977x1011 2.294x1021 2.294x1021 6.184x1010 
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Table J15 Results of SDO5 for Various Initial Densities, gMult = 0.1 and Neutron Matter 
Using the Eqs. (J32), (J33) and (J34) Hypothesis 

Description NS0 
(kg/m3) 

Radius (m) Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Type 1A SN 
Remnant 

3.0x1016 52279 1.362 0.261 1.101 

Sgr A* 9.41x1016 3.352x109 3.589x1014 3.589x1014 3.677x106 
TON 618 1.14x1017 5.396x1011 1.497x1021 1.497x1021 6.779x1010 

 
J.12.3. Hidden Mass in Our Speculative Models. Tables J12 through J15 reveal that the mass 

we observe is far less than the positive mass within the heaviest objects. Here we will discuss 

qualitatively why this situation occurs for our PG saturation speculative example. First consider a 

small star with positive mass; gravity will confine it to some radial distribution and there will be 

little negative mass. As we add mass, the gravity grows, density grows, and PG grows, and 

therefore negative mass grows. When the star grows to where PG hits the saturation point the 

negative density will reach its limit, and there will be a positive net density. That net density is the 

one that leads to the saturation PG. When we add more positive mass, the size of the star must 

grow, since the positive density is only contained by gravity, and since gravity has now saturated 

the gravity cannot contain a higher density. As we continue to add mass to the star, any new net 

mass must be only enough to keep the saturation level of PG. If there isn’t enough net mass, PG 

and the associated negative mass will fall, and this will lead back to the required increased net 

mass. If there is too much net mass, the positive mass density will grow (since the negative mass 

density is fixed in saturation) and since gravity is fixed by saturation, the positive mass will expand, 

reducing the positive density, and in turn, reducing the net density until it reaches the required 

value. Prior to saturation Eq. (249) gives PG = (3[KG1–KG2]MNETc2/16r2)r̂. Hence the mass we 

need to add to MNET to keep PG constant grows as r2 and yet the negative mass grows as r3 (it has 

a constant density due to the saturation) and the positive mass grows as the negative mass minus 
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the net mass (by definition) so the growth of the net mass is slower than the growth of the negative 

and positive masses, and as we get to larger and larger stars the negative mass tends to equalize 

with the positive mass. Indeed, this is what is seen in the results of Tables J13 to J15. 

J.12.4. A Review of Results from Our Speculative Models. Section J.7 has described how our 

particle-in-a-box model used in code SDO1 provides a good match to the present status quo for 

white dwarf modeling. For the neutron stars that are remnants of type 1A supernovae we see a 

departure from contemporary calculations, and when it comes to extremely large objects our 

treatment is vastly different from the presently prevailing idea of black holes. 

Tables J13 through J15 show that type 1A supernova remnants will have a negative-field-mass 

close to half of its raw positive mass for LIM = LIM0 and less than a quarter of its raw positive 

mass when LIM = LIM0/10. For larger mass objects, Tables J13 through J15 show values for radii 

and mass considerably different from prevailing theory. Clearly any finite radius is a significant 

departure from the General Relativity concept of a singularity. Additionally, Tables J13 through 

J15 show that what we observe (called the net mass) is frequently only a very small fraction of the 

raw positive mass present in super massive bodies. 

The extension of our first-order theory (speculative example 2; section J.12.2) is a better fit to 

observations than proposing exotic particles (speculative example 1; section J.12.1). A recent 

measurement[J2] gives a diameter of 51.8 arc-seconds (6.18x1010 m) for the central ring around 

Sgr A*. (Sgr A* is 26,000 light-years from earth, and a circumference of a circle with that radius 

is 2x26,000 light-years = 163,400 light years (ly). A light year is 3x108 m/s x 365 days x 24 

hours/day x 3600 s/hour = 9.46x1015 m. An arc-degree is 1/360 of the circumference, and a micro-

arc-second is (1/3600)x10-6 of that, resulting in a diameter of 163,400 ly x 9.46x1015 m/ly x 51.8 

x 10-6/(360x3600) = 6.18x1010 m.) From Table J12, we find a radius of 8.402x1010 m and a far-
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field net mass of 1.599x107 Ms for the case where an exotic hadron has the mass of an electron. 

From Table J13 we find radius of 2.297x109 m and a far-field net mass of 3.807x106 Ms for the 

case where g has a saturation at LIM0, and from Table J15 we find radius of 3.352x109 m and a 

far-field net mass of 3.677x106 Ms for the case where g has a saturation of LIM0/10. From these 

results, with the observed Sgr A* ring radius of 3.1x1010 m, we can conclude that our electron-

mass exotic particle hypothesis leads to results outside of the recent measurement, while the two 

results associated with an extension of our first-order theory are well within the observed value. 

For this reason, we’ll now set the exotic particle speculation aside. 

J.12.5. Neglecting the First-field-mass Inside of Super Massive Objects. In this section J.12 we 

have shown how the hidden mass from the second-field-mass is nearly equal to the normal mass 

inside of super massive objects, and we have neglected any mass effect from the first-field-mass. 

To see why this neglect is permissible it is of interest to calculate the first-field-mass of the largest 

known stellar object, TON 618. From Eq. (266) we see that the first-field-mass inside of the radius 

of the star is M1IN = KG5(MM/R3)r4 = KG5MR, where r = R and M=1. Eq. (276) gives KG5≈10-21 

m-1 and Table J15 gives M = 6.779x1010 Ms and R = 5.396x1011 m for TON 618 giving a first-

field-mass of M1IN = (10-21 m-1)(6.779x1010 Ms)(5.396x1011 m) = 36.58 Ms. We see that the first-

field-mass of TON 618 is negligible with respect to its observed mass, and since TON 618 has a 

larger mass and radius than any other object we consider it is permissible to neglect the dark mass 

here in section J.12. (Note that the second-field-mass affects PG, which is why we use the net mass, 

and not the positive mass, when we calculate M1IN here.) 

J.12.6. Ramifications of Our Speculative Models. Our speculative models have some rather 

substantial differences with respect to prevailing theory. The first difference is that our speculative 

models predict that an extremely high percentage of the universe’s hadronic mass exists in the 
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super massive objects near galactic cores. Instead of having a mass of about 4x106 Ms, Table J15 

reports that Sgr A* has a mass closer to 4x1014 Ms. With a present mass estimate of the Milky 

Way of 1.5x1012 Ms, this says that the hadronic hidden mass within Sgr A* is about 300 times 

greater than the sum of all of the other mass within the galaxy. With other galaxies having similar 

central objects, it follows that our speculative model predicts an amount of hadronic matter in the 

universe far greater than what is presently believed.  

The hidden mass changes our view of the nature of the central galactic objects. In the prevailing 

dogma, the central object of the Milky Way contains only about 3x10-6 of the hadronic mass of the 

galaxy. But when we include the hidden mass, we see that our speculative model calculates the 

central galactic object to contain something like 99.6% of the galaxy’s mass. This is a significant 

promotion. Rather than just being the biggest object among a trillion others, the central object now 

becomes the dominant object, with all other objects becoming a mere faint halo in comparison. 

Our speculative model may lead to a better understanding of quasars and supernovas. Quasars may 

be the result of a large positive mass being accreted into what will eventually become a central 

object of far more modest mass, releasing tremendous energy during the process. Some of the 

larger objects presently being found may indeed be super massive neutron stars in the process of 

forming, rather than fully formed central objects. Prior to their formation they will have 

substantially more observed mass than they will after they have been fully formed, as much of the 

mass will become hidden by negative-field-mass once they compress into their final high-density 

state. (Before compression their larger size leads to lower values of PG, and lower negative mass, 

than after they are compressed.) Since our speculative model predicts far more hadronic matter 

than presently believed, this means there is more fuel for quasars that presently believed, although 

note that there may be primordial super massive neutron stars at their center as well, as we’ll 
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describe below. The explosive power of supernovas may also be explained via a speculation that 

the formation of negative-mass during collapse of a star results in a considerable release of energy. 

And finally, our speculative model leads to further speculation concerning the origin of the 

universe. Were gravity to lead to a coalescing of the existing super massive neutron stars into one 

giant object, the mass of such a body would be far larger than the individual super massive objects 

we observe today. As we have speculated, existing super massive objects may lead to a saturated 

PG and a modified gravitational attraction. Should an object become vastly more massive, it is 

possible that the stress on the aether might cause the aether itself to rip apart. After all, the aether 

is also a substance; it is capable of being torn apart. And recall that it is the aetherial disturbance 

that is responsible for the gravity holding the super massive object together. If the aether itself is 

no longer there, this would result in no more inward gravitational force at all. Yet the neutrons 

would still have enormous outward pressure due to their compressed state. In such a condition 

there would be a gigantic outward explosion. The origin of such an explosion would not be the big 

bang singularity of present theorizing; instead the origin of the explosion would be a single, highly 

dense ball of finite radius. After such an explosion we can further speculate that the torn aether 

will recombine in time, but the explosion of matter would continue outward, which is what we see 

today. (Such an explosion may also contain primordial neutron stars.) 

J.12.7. A Replacement for the Concept of Black Holes. Our speculative example 2 fits the 

observational data of reference J2 quite well. Rather than the black hole model of a singularity 

surrounded by an event horizon further surrounded by an accretion disk, our new model is that of 

a large neutron star, surrounded by a negative mass density region just outside its surface, further 

surrounded by an accretion disk. Recall that a saturated PG will occur right up to the surface of the 

neutron star, creating a negative mass density comparable to the positive mass density there. Just 
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beyond the surface PG and the negative mass density will still be large, but there will be no positive 

mass in that region, leaving only negative mass. This negative mass density then leads to a rapid 

drop off of PG until conditions become that of a conventional gravitational field.  

In our speculative example, instead of an event horizon that allows nothing, not even light, to 

escape, the negative mass region may also act to suppress photon emission. In the latter case this 

is because the quantum and tension constants undergo saturation effects that may severely affect 

photon traversal through such regions. (Recall that light is an aetherial oscillation depending upon 

aetherial tension as a restoring force opposing displacement.)  

It is noteworthy that the gravitational radius specified by Table 1 in reference J2 is 4.8 as, or 2 

x 26,000 ly x 9.46x1015 m/ly x 4.8 x 10-6/(360x3600) = 5.72x109 m. We see that the calculated 

radii of Tables J13 and J15 of 2.297x109 m and 3.352x109 m, respectively, are reasonably close to 

and within that value. As a result, our speculative example is an excellent fit to the observational 

data, indicating that super massive, negative-mass-encased, neutron stars are a viable alternative 

to black holes. 

J.13. Concluding Comments on Our Speculations and Other Possibilities. The primary 

important result of our second speculative example in section J.12.2 is that we have shown that a 

model for super massive objects can be achieved consistent with the axioms and hypotheses of the 

quantum luminiferous aether. This demonstration required only a single, simple speculation of a 

saturated PG. However, it is repeatedly emphasized that the specifics of any model are speculative 

at this point. Other speculative models are certainly possible. 

Even within our speculative model, variations could be proposed. It is unlikely that PG will grow 

according to Eq. (249) until a single threshold value is reached and then discontinuously transition 

into a constant and remain that way thereafter. More likely, any physical saturation onset would 
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occur in a continuous fashion and its value after saturation might deviate from an exact constant. 

We also don’t know the precise value of where the threshold for saturation occurs. 

And there are many possibilities beyond the simple examples we have proposed above. In section 

J.12 we have presented several exotic star possibilities along with a single proposal for an 

extension of the work of section D. There are an enormous number of other possibilities, especially 

when combinations of models are considered. In addition to the several exotic masses chosen, 

there are an infinite number of other choices, and one could also consider looking into compound 

exotics (with a lighter mass exotic bound to a heavier one in an exotic atom). Many other choices 

for extending the work of section D could be proposed. And it is entirely possible that super 

massive objects consisting of exotic particles will interact via forces that are extensions of the 

physics of section D, combining the approaches of both of our earlier speculative examples. Super 

massive objects could also have layers, such as a core, a mantle, a crust and an atmosphere. 

However this level of complexity has been avoided here as there are no supporting observations 

for any of this. 

Recall also that we have assumed that present data associated with super massive objects is correct 

when we developed our speculative examples. However, as mentioned above in section J.12.6, 

quasars might be large dense clouds in the process of forming what will eventually become a lower 

mass object later on. There may be no super dense object with a mass as large as TON 618, as it 

might now be a less-dense object in the process of collapsing to a single high-density object, and 

its eventual mass may be much less once the hidden mass appears. What we consider to be “data” 

often is informed by what we believe to be true theoretically, and if our beliefs change (by a new 

fundamental physics) our understanding of the data may change as well. In fundamental physics, 

care and thoroughness is always needed. 
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One point that should cause pause and reflection is the prediction of large amounts of hidden mass. 

Section 12.6 notes that perhaps 99.6% of the hadronic mass of the universe is now hidden. While 

such a big prediction is possible, and while our advances in knowledge of the universe have often 

involved large deviations from what was thought before, it is also quite possible that any new 

speculation is simply wrong. Much further work should be done before we remove the word 

“speculation” from the models discussed in section J.12. 

The important point is that we really don’t know with any specificity what is going on inside of 

the super massive objects and that any modeling is of course quite speculative at this point. Perhaps 

a model can be found that greatly reduces the predicted levels of hidden mass while remaining 

consistent with the axioms herein. Of course, additional observational data, properly understood, 

is always helpful in advancing our understanding. Ideally we should somehow experiment with 

the aether itself, by isolating portions of it and then subjecting it to tests. Then perhaps we can get 

more specific about its properties under extreme conditions. (Admittedly, isolating the aether and 

experimenting with it could be very challenging to accomplish.) 

Nonetheless, it is important that our theory provide some model to account for all observed 

gravitational phenomena including those within super massive objects, and our speculative 

modeling of section J.12 achieves that goal. Additionally, a maximum limit of PG is certainly 

plausible. The shrinkage of the aetherial quanta will have a limit (it can’t go less than zero), and 

the interaction between the two species of aether could easily lead to the maximum limit of PG 

speculated in section J.12.2. For these reasons, our speculative example of section J.12.2 is likely 

as good or better than many others, and so we will now close this Appendix J with no further 

speculations, leaving the important work of refined speculations and continued observations for 

future efforts. 
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Appendix K – Final Remarks 

K.1. A Return to a Physical Theory. Ever since the dawn of relativity and quantum mechanics, 

the prevailing physics theory has been rather divorced from physical models. This work has aimed 

to revert to the earlier way of doing physics, and we have now derived all of the equations 

governing electrodynamics and gravitation from a simple underlying physical model. As such, we 

also now have a physical interpretation of many physical entities, and this section will now discuss 

some of those physical interpretations. 

K.1.1. Identifying Electric Charges as Free Aether. The first physical identification comes from 

Poisson's Equation, shown above as Eq. (55), ∇2 = –D/0. In Eq. (55) and herein D is identified 

as free, detached-aether. Conventionally D is identified as electric charge. From this observation 

it is now understood that electric charge is in actuality an amount of aether that has become 

detached from the predominant attached-aether. Furthermore, positive charge is one kind of 

detached-aether, while negative charge is the other kind of detached-aether. This identification 

shows that the aether itself can be considered to be two infinite seas of charge - one negative, the 

other positive, which are internally attached and in the state of a solid. And since electric current 
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is understood as the motion of electric charge, electric currents are now identified as moving 

detached-aether. 

K.1.2. Identifying the Static Electric Field as a Longitudinal Aetherial Displacement 

The scalar potential  satisfies Eq. (56) above: 

PL – NL = ∇(P – N) = –0∇/0 (56) 

With the static electric field being the gradient of , this reveals that static electric fields are simply 

the longitudinal separation of the positive and negative aetherial components. To illustrate, Figs. 

K.1 and K.2 show two depictions of the positive-attached-aether. Fig. K.1 shows undisturbed 

aether, while the Fig. K.2 shows the case where a cylinder of detached-positive-aether has been 

inserted. (Here we fill the cylinder with detached-positive-aether to illustrate the effect. As 

mentioned above, it is usually the case that the detached-aether density will be much less than the 

attached-aether density.) The attached-aether is green and the detached-aether is blue in the figures. 

Since the aether is incompressible, when detached-aether is inserted it must push the attached-

aether out of the way. Arrows in Fig. K.2 show some such displacements. As can be seen, the 

further away the original attached-aether is from the center the less it needs to move out of the 

way. Several rings are drawn in the figures such that each cylindrical cross section contains the 

same area. Since the area is 2rr, it is easy to see that r decreases as 1/r. Hence the displacement, 

PL, caused by inserting a cylinder of detached-aether, decreases as 1/r. We also can employ Eq. 

(58), NL = –PL, to see that the static electric field is proportional to PL. In this aether model charge 

has been identified as detached-aether, and the static electric field is identified as being 

proportional to the displacement of the attached-aether. Hence, Figs. K.1 and K.2 show the familiar 

result that for an infinite cylinder of charge the electric field falls off as 1/r. 
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Figure K.1. Undisturbed, attached-positive-aether. Cylindrical boundaries are arbitrarily 

assigned so that each cylindrical cross section has an equal area. 

 

Figure K.2. Detached-positive-aether (blue) is injected into the attached-positive-aether (green). 

Each cylinder of attached-aether is moved radially outward by one position as a result of the 

injection of detached-aether. 

The aether model gives us an answer for what the static electric field is in physical terms: it is a 

quantity that is proportional to the longitudinal separation of the positive-attached-aether from the 

negative-attached-aether. 

K.1.3. Identifying the Vector Potential as Aetherial Displacement 

Next, we look at Eq. (114) 
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PT = –NT = –KF3A/0T0  (114) 

We now see that the vector potential is proportional to the transverse separation of the positive-

attached-aether from the negative-attached-aether. 

K.1.4. Identifying Light as an Aetherial Wave 

Light can now be identified as an aetherial wave - just as the classical theory anticipated in the 

time of Maxwell. 

 

 

K.1.5. Why Magnetic Monopoles Do Not Exist 

When written in terms of the electric and magnetic fields, Maxwell's equations have a certain 

symmetry that has led to speculation that a magnetic charge should exist alongside the known 

electric charge.  However here we see that the physical entities underlying Maxwell's equations 

are the scalar and vector potentials in the Coulomb gauge, and in that form the symmetry argument 

for the existence of a magnetic monopole no longer exists. Positive electric charge is identified as 

positive-detached-aether, and negative charge as negative-detached-aether. There is no similar 

substance to form magnetic monopoles. 

K.1.6. Why Dark Matter and Dark Energy Particles Do Not Exist. As described above, the 

observed gravitational effects being attributed to dark matter and dark energy (before publication 

of this work) are explained well by the gravitational-mass of the tension, quantum and gamma 

fields. No extra particles are required. 

K.2. Future efforts. As science advances, improvements to our understanding are generally 

contributed to by many over time. The initial work on any subject is typically extended into areas 
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unforeseen at the time of initial publication, and it is likely the same dynamic will hold with the 

work herein. This section specifies some of the possible future efforts that are already apparent. 

The first future effort concerns electromagnetism at small (millimeter or less) scales as well as 

black holes where the assumptions that disturbances are small may break down. (See section E.3.3 

for a start on one such effort.) 

In this work we have shown that Maxwell’s Equations, the Lorentz Force Equation, and the 

Equations of Gravity all result from an aetherial model wherein we have kept terms to the first 

order in non-vanishing quantities. Of note in this regard is the keeping the ∂PT/∂t and ∂NT/∂t 

terms in section C.14, but discarding them in sections C.6 and C.15. (In section C.14 they are the 

dominant surviving term.) Future efforts may involve analyses including the discarded terms. 

It is possible that the delta-force leads to field-masses similar to the gamma-force. However, since 

the delta-force has both negative and positive sources it tends to neutralize while the gamma-force 

tends to accumulate, and we only observe the effect of the gamma field-mass so far.  Future efforts 

may include the delta-force contribution to gravitational effects. 

Future efforts may also include those investigation discussed in section C.17.1 concerning the 

empirical choices made herein concerning the direction of forces on the detached-aether and which 

components of the flow apply in certain situations. 

Ephemerides calculations should be done using the gravitational equation described herein while 

including planetary and non-planetary objects as well a stellar oblateness. Advanced 

computational efforts should be employed on far superior computing resources than what has been 

described herein. 
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Of course, further experimental and observational efforts should be made to test the theory and to 

improve upon our knowledge of the fundamental constant values. It is especially of interest to 

attempt to isolate and manipulate the aether. (See section E.3.5.) 

There is lastly the issue of the nuclear force. By the ABC Preon Model [17, 18] there is a single 

preonic force responsible for nuclear and preonic binding, and that force is carried by the neutrino. 

It is possible that such a force also has an aetherial underpinning. For this work we have kept the 

scope to just electromagnetism and gravity. Nuclear force evaluations are another candidate for 

future efforts. 

K.3. The Limits of What We Know. Herein we have assumed that a solid aether occupies all of 

space. We must however keep in mind that our perspective is quite limited. As large as it is, our 

galaxy occupies only an infinitesimal volume compared to the boundaries of the known universe, 

and the true boundary (it there is one) could be much beyond that of which we are presently aware. 

Perhaps the aether is not a single stationary solid everywhere. Distant portions of it may be in 

motion with respect to other portions. It may be expanding or contracting at extremely large scales. 

The aether may be finite in size and have a boundary. This work has shown that if we assume a 

local solid aether moving with respect to us at v << c that we arrive at all the known equations of 

electrodynamic and gravitational physics as observed by our limited local measurements. Care and 

humility should be taken when extrapolating these conclusions to regions far from what we can 

measure locally. 

 
 


